

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Chinese Chemical Letters 23 (2012) 1279-1282

Extensive spectral tuning of the proton transfer emission from green to red *via* a rational derivatization of salicylideneaniline

Ming Hui Luo, Hsing Yang Tsai, Hong Yi Lin, Sin Kai Fang, Kew Yu Chen*

Department of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
Received 9 July 2012
Available online 23 October 2012

Abstract

A series of salicylideneaniline derivatives **1a–1f** were synthesized under mild condition in high yields, and characterized by ¹H NMR, HRMS, UV–vis and emission spectra. In solid and aprotic solvents **1a–1f** exist mainly as *E* conformers that possess a six-membered-ring hydrogen bond and undergo excited-state intramolecular proton transfer (ESIPT) reactions, resulting in a proton-transfer tautomer emission. Depending on the electronic donor or acceptor strength of the substituent in either the HOMO or LUMO site, a broad tuning range of the emission from green (**1c**) to red (**1a**) has been achieved.

© 2012 Kew Yu Chen. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: ESIPT; Schiff bases; Salicylideneaniline derivatives; DFT calculations

Schiff bases are aldehyde- or ketone-like compounds in which the carbonyl group is replaced by an imine or azomethine group [1–6]. They are widely used as pigments and dyes [7–11], catalysts [12–14], liquid crystals [15–17], intermediates in organic synthesis [18–22] and also exhibit a broad range of biological activities [23,24]. For example, salicylideneaniline (1d, Scheme 1) derivatives are effective against *Mycobacterium tuberculosis* H37Rv, exhibiting an MIC value of 8 μ g/mL [25]. On the other hand, the excited-state intramolecular proton transfer (ESIPT) reaction of salicylideneaniline derivatives has been investigated for past years [26,27], which incorporates transfer of a hydroxy proton to the imine nitrogen through an intramolecular six-membered-ring hydrogen-bonding system. The resulting proton-transfer tautomer possesses significant differences in structure and electronic configuration from its corresponding normal species. Accordingly, a large Stokes shifted $S'_1 \rightarrow S'_0$ fluorescence (the prime sign denotes the proton-transfer tautomer) was observed. This unusual photophysical property has found many important applications. Prototypical examples are probes for solvation dynamics [28,29] and biological environments [30,31], fluorescence microscopy imaging [32], near-infrared fluorescent dyes [33], photochromic materials [34], chemosensors [35–37] and recent application in the field of organic light emitting diodes [38]. We now report the synthesis, characterization, spectroscopic properties and complementary density functional theory (DFT) calculations of X-salicylidene-Y-aniline compounds (1a–1c) with X = NO₂ as an electron acceptor substituent and Y = OMe as an electron donor substituent.

E-mail address: kyuchen@fcu.edu.tw (K.Y. Chen).

Corresponding author.

Scheme 1. The synthetic route of 1 and the structures of 1a-1f.

1. Results and discussion

Scheme 1 shows the synthetic route of 1 and the structures of the salicylideneaniline derivatives 1a-1f. These Schiff bases were prepared through condensation reactions between substituted salicylic aldehydes and substituted anilines. The structures of the products were characterized by ^{1}H NMR spectroscopy and high resolution mass spectrometry (HRMS) [39]. In the ^{1}H NMR studies, the existence of a strong intramolecular hydrogen bond between O–H and N is evidenced by the observation of a large downfield shift of the proton peak at $\delta > 12$ ppm for all compounds 1a-1f, the values of which are in the order 1a (17.19 ppm) > 1b (17.10 ppm) > 1c (16.93 ppm) > 1d (13.26 ppm) > 1c (12.44 ppm) in dry CDCl₃. The dominance of a E isomer for 1a-1f is strongly supported by DFT geometry optimization (Fig. 1). These results are consistent with those of previous studies on other salicylideneaniline derivatives [40.41].

Fig. 2 shows the absorption and emission spectra of **1a–1e** in chloroform. For clarity, the absorption and emission spectra of **1f** are omitted in Fig. 2 because the difference between **1e** and **1f** is small. The absorption spectra of **1a–1f**

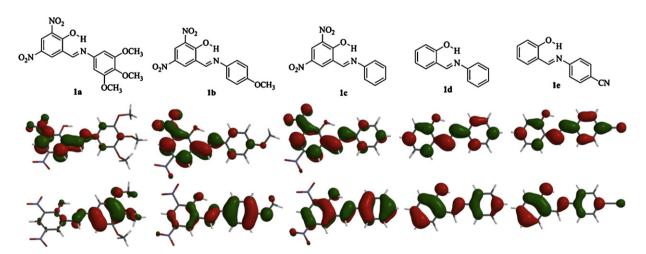


Fig. 1. DFT (B3LYP/6-31G**) geometry-optimized structures and computed frontier orbitals of **1a–1e**. The upper graphs are the LUMOs and the lower ones are the HOMOs.

Download English Version:

https://daneshyari.com/en/article/1255129

Download Persian Version:

https://daneshyari.com/article/1255129

Daneshyari.com