Chinese Chemical Letters 20 (2009) 326-329 ## A new selective fluorescent probe for lead ions Mao Zhong Tian*, Feng Feng, Shuang Ming Meng, Yue Hua Yuan School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China Received 16 June 2008 #### **Abstract** A new fluorescent probe (BPb_1) for Pb^{2+} has been synthesized, where diethanolamine (receptor) is linked with 4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) (fluorophore) via a methylene group (spacer). The absorption (496 nm) and emission (505 nm) wavelengths are in visible range. The fluorescence quantum yields of the lead-free and lead-bound states of BPb_1 in acetonitrile are 0.013 and 0.693, respectively. The large chelation enhanced fluorescence effect (CHEF) with Pb^{2+} can be explained by the blocking of the photoinduced electron transfer (PET) process. © 2008 Mao Zhong Tian. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. Keywords: Probe; Pb2+; Selectivity; Photo-induced electron transfer; Fluorescence At present, the development of fluorescence probes for sensing of metal ions is an important goal in chemistry and biology due to their relatively high sensitivity, selectivity and short response time, local observation, etc [1]. Even though fluorescent probes for various metal ions have been developed over the last decades, there have been relatively few reports on Pb²⁺ selective fluorescent probes [2–20]. BODIPY dyes have excellent photophysics and photochemistry properties [21], so a few BODIPY-based fluorescence probes have been reported recently [22–27]. Herein, we reported a new BODIPY incorporated Pb^{2+} fluorescence probe based on photoinduced electron transfer mechanism. Synthesis of probe BPb_1 is shown in Scheme 1. #### 1. Experimental All reactions were carried out under a nitrogen atmosphere with dry, freshly distilled solvents under anhydrous conditions. All the materials were obtained from commercial suppliers and were used without further purification. ¹H NMR and ¹³C NMR spectra were obtained on a Varian INVOA 400 MHz spectrometer. High resolution mass spectra were obtained using Q-TOF mass spectrometry (Micromass, England). UV absorption spectra were obtained on a Perkin Elmer Lambda 35 spectrophotometer. Fluorescence emission spectra were recorded with a PTI-700 fluorimeter. Melting point was determined by an X-6 micro-melting point apparatus and was uncorrected. Chloroacetyl chloride (1.94 mmol) and 1,4-dimethylpyrrole (3.9 mmol) were dissolved in 150 mL of absolute CH_2Cl_2 under a nitrogen atmosphere, the absolute CH_2Cl_2 was bubbled with N_2 for 0.5 h prior to use. Then the mixture E-mail address: tmzhong2002@yahoo.com.cn (M.Z. Tian). ^{*} Corresponding author. Scheme 1. Synthesis of probe BPb₁. was stirred for 5 h at room temperature. The black solution was added 4 mL of triethylamine, followed by 8 mL of BF₃·OEt₂. The mixture was stirred under a N₂ atmosphere for another 4 h at room temperature. Finally, the reaction mixture was filtered, and evaporated to dryness. The crude compound was purified by flash column chromatography on silica gel (16:1 hexanes–EtOAc) to afford a red solid 1 in ca. 43% yield. A suspension of compound 1 (0.34 mmol), 2-(2-hydroxyethylamino)-ethanol (0.34 mmol), potassium iodide (0.10 mmol) and potassium carbonate (0.34 mmol) in 30 mL THF was stirred for 8 h at room temperature under N₂ atmosphere. After filtration, THF was removed by evaporation. The crude compound was purified by flash column chromatography (200:1 CH₂Cl₂–MeOH) to afford a yellow solid compound BPb₁ in ca. 53% yield. mp: 142–143 °C; ¹H NMR (400 MHz, CDCl₃, δ ppm): 6.16 (s, 1H, CH), 6.15 (s, 1H, CH), 3.73 (t, 4H, J = 4.6 Hz, OCH₂), 2.96 (t, 4H, J = 4.6 Hz, CH₂N), 2.80 (s, 2H, NCH₂C), 2.63 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 2.45 (s, 3H, CH₃), 2.44 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 149.14, 126.37, 125.99, 125.03, 122.24, 120.92, 117.99, 60.2, 45.98, 31.13, 21.41, 14.73, 13.65. HRMS: calcd. for C₁₈H₂₆BF₂N₃O₂ [M + H]⁺, 366.2164; found, 366.2152. #### 2. Results and discussion The absorption maximum wavelength of BPb_1 was 496 nm. The maintaining of the maximum absorption wavelength upon the binding of Pb^{2+} indicates a PET mechanism [1]. The fuorescence spectra of BPb₁ were obtained by excitation at 496 nm (Fig. 1.). BPb₁ showed a large CHEF effect with Pb²⁺. The fluorescence quantum yield was improved from $\varphi_F = 0.013$ to $\varphi_F = 0.693$ when the Pb²⁺ was added [28]. During the complexation, the position of the fluorescence maximum emission wavelength did not change, which indicating that the large CHEF effects with Pb²⁺ can be explained by the blocking of the PET process. PET fluorescent probes are of great interest and promise because of their various applications. The electron transfer between the fluorophore (as signaling unit) and the receptor results in "switching off" of the fluorescence intensity. The presence of guests (metal ions or proton) capable of binding with the lone pair electrons of the receptor causes the PET Fig. 1. Emission spectra of 1 μ mol/L BPb₁ in the presence of 0–300 eq. of Pb²⁺. These spectra were measured in acetonitrile (excitation at 496 nm). The slit width was 4 nm for both excitation and emission. ### Download English Version: # https://daneshyari.com/en/article/1255530 Download Persian Version: https://daneshyari.com/article/1255530 <u>Daneshyari.com</u>