

Chinese Chemical Letters 21 (2010) 830-833

Three new sesquiterpene alkaloids from the root of Tripterygium wilfordii

Chun Min Wu a,b, Lin Mei Zhou b, Yi Feng Chai a, Yu Tian Wu a, Guo Rong Fan a,*

^a Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
^b Fujian Institute For Drug Control, Fuzhou 350001, China
Received 10 November 2009

Abstract

Three new sesquiterpene alkaloids, 1-desacetylwilforgine (1), 1-desacetylwilforine (2), and 9'-hydroxy-2-nicotinoylwilforine (3) were isolated from the roots of *Tripterygium wilfordii* Hook f., along with six known alkaloids. Their structures were established on the basis of spectral analysis.

© 2010 Guo Rong Fan. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Tripterygium wilfordii; Celastraceae; Sesquiterpene alkaloid

Tripterygium wilfordii Hook f. has been used as traditional Chinese medicine to treat cancer, rheumatoid arthritis, autoimmune diseases, skin disorders, and in male-fertility control for many years [1]. In the previous studies, we isolated a new triterpenoid 3,4,6-trihydroxy-2-oxo-1(10), 3,5,7-tetraen-23, 24-nor-D: A-friedooleana-29-oic acid from the root of *T. wilfordii* [2]. In continuing studies on the chemical components of this species, we have isolated three new sesquiterpene alkaloids 1-desacetylwilforgine (1), 1-desacetylwilforine (2), 9'-hydroxy-2-nicotinoylwilforine (3), together with six known alkaloids: wilforgine (4) [1], wilfordine (5) [3], wilfortrine (6) [4], wilforine (7) [5], wilfordine (8) [6], wilfornine (9) [7] from the root of *T. wilfordii*.

The roots of *T. wilfordii* were collected in Taining Prefecture, Fujian Province (2007) and identified by Jin Ming, the associate chief pharmacist of Fujian Institute for Drug Control, Fuzhou, China.

The air-dried root barks (5.3 kg) of *T. wilfordii* were extracted with 75% EtOH ($3 \times 20 \,\mathrm{L}$) for 10, 8 and 8 h, respectively. The EtOH extracts were evaporated to dryness under reduced pressure, and the residues were suspended in H₂O. The suspensions were extracted with petroleum ether, ethyl acetate, and n-butanol in turn. Then the ethyl acetate part was evaporated to give 174 g of a residue, which was subjected to CC (silica gel 200–300 mesh, 1.2 kg). The column was eluted with solvents of increasing polarity petroleum ether/ethyl acetate to give 10 frs (fr: 1–10). Fr 5 was further purified by HPLC (CH₃CN:H₂O 55:45) to give 1 (11.6 mg), 2 (5.5 mg), 3 (3.5 mg).

Compound 1 was obtained as white needle crystals. Its HREI-MS showed at m/z 816.2710 [M+H]⁺ (calcd. for $C_{39}H_{45}NO_{18}$ 816.2714). The ¹H NMR spectrum of 1 (Table 1) showed two tetrarnary and one tertiary methyl groups

E-mail address: guorfan@163.com (G.R. Fan).

^{*} Corresponding author.

Table 1 1 H and 13 C NMR data of 1–3 in CDCl₃ (400 MHz for 1 H, 100 MHz for 13 C, δ in ppm, J in Hz).

No.	1			2		3	
	$\delta_{ m C}$	$\delta_{ m H}$	HMBC (position)	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$
1	74.1	5.41 d (3.2)	9	74.2	5.32 d (3.2)	73.1	5.75 d (3.6)
2	69.1	5.52 dd (3.2, 3.2)	2-OFur	69.3	5.50 d (3.2)	68.9	5.54 d (3.6)
3	75.0	5.08 d (2.8)	10, 11'	75.1	5.14 d (2.8)	77.7	5.09 d (3.2)
4	71.7			71.2		69.8	
5	73.4	5.71 d (3.6)	5-OAc	73.6	5.76 d (3.2)	73.6	6.93 s
6	52.5	2.45 d (4.0)	5, 7	52.4	2.46 d (4.0)	51.1	2.40 d (4.0)
7	69.3	5.38 d (3.6)	5, 7-OAc	69.8	5.49 d (3.6)	69.8	5.47 dd (3.2, 3.2)
8	71.0	5.40 d (6.0)	9, 8-OAc	71.2	5.37 d (5.6)	70.7	5.45 d (6.0)
9	50.9	. ,	•	50.7	, ,	52.0	, ,
10	92.7			92.7		94.0	
11a	60.9	5.42 d (13.2)	8, 9, 10, 11-OAc	61.1	5.40 d (13.2)	60.3	5.53 d (13.6)
11b	00.5	4.36 d (13.2)	0, 7, 10, 11 0110	01.1	4.46 d (13.2)	00.5	4.38 d (13.6)
12	23.4	1.89 s	3, 4, 10	23.9	1.99 s	23.0	1.69 s
13	85.0	1.07 5	3, 1, 10	85.1	1.77 5	84.8	1.07 5
14	18.2	1.67 s	6, 13, 15	18.2	1.67 s	17.9	1.6 s
15a	71.1	5.86 d (12.0)	13, 12'	71.2	5.38 d (12.0)	69.8	5.78 d (12.0)
15a 15b	/1.1	3.73 d (12.0)	12'	71.2	3.73 d (12.0)	07.0	3.74 d (12.0)
2'	153.6	8.77 dd (4.8, 1.6)	3',4'	153.6	8.76 dd (4.8, 1.6)	152.3	8.71 dd (4.8, 1.6)
3'	121.2	7.29 dd (4.8, 8.0)	5', 4	121.2	7.29 dd (4.8, 8.0)	120.6	7.22 dd (4.8, 8.0)
<i>4'</i>	138.7	8.37 dd (1.6, 8.0)	6'	138.7	8.36 dd (1.6, 8.0)	137.8	8.37 dd (1.6, 8.0)
5'	123.9	8.57 dd (1.0, 8.0)	0	123.9	8.30 dd (1.0, 8.0)		6.57 uu (1.0, 6.0)
6'	165.1			164.9		125.5 165.2	
		4.10 2.00			1.06 2.96		2.07 2.06
7a', 7b'	33.0	4.10 m, 2.89 m		33.0	4.06 m, 2.86 m	31.4	3.97 m, 2.96 m
8a', 8b' 9'	33.5	2.38 m, 1.84 m		33.4	2.38 m, 1.98 m	38.5	2.48 m, 2.19 m
-	38.1	2.30 m	0/ 0/ 11/	38.2	2.20 m	77.7	1.07 -
10'	19.0	1.18 d (6.4)	8', 9', 11'	18.9	1.20 d (6.4)	28.0	1.27 s
11'	175.3			175.3		172.5	
12' 1"	167.1			167.1		168.0	
-	440.5	0.00	2" 4" ="	129.0	0.00 (4.0.7.0)		221142
2"	148.5	8.20 s	3", 4", 5"	129.8	8.02 t (1.2, 7.6)	151.2	9.31 d (1.6)
3"	118.4		-" -"	128.8	7.50 t (7.6, 7.6)	124.8	
4"	109.6	6.80 d (1.2)	3", 5"	133.8	7.63 t (1.2, 7.6)	137.3	8.15 dd (1.6, 3.2)
5"	144.3	7.49 s	3"	128.8	7.50 t (7.6, 7.6)	123.7	7.50 dd (1.6, 3.2)
6"				129.8	8.02 t (1.2, 7.6)	154.3	8.88 dd (1.6, 3.2)
2-C=O	161.0			165.3		163.7	
1-Ac						20.5	2.19 s
						169.7	
5-Ac	21.0	2.16 s	5-OAc	20.9	2.18 s	21.0	2.22 s
	170.0			169.8		169.8	
7-Ac	20.5	1.85 s	7-OAc	20.6	1.88 s	21.0	2.19 s
	169.5			169.7		170.2	
8-Ac	20.4	1.93 s	8-OAc	20.4	1.90 s	20.5	1.97 s
	169.0			169.0		169.0	
11-Ac	21.1	2.07 s	11-OAc	21.0	1.85 s	21.5	1.86 s
	170.1			170.0		170.0	

[δ 1.67(H-14), and 1.89(H-12), 1.18(H-10')], four acetyl methyl groups [δ 1.85(OAc-7), 1.93(OAc-8), 2.07(OAc-11), 2.16(OAc-5)], two methylene groups connected to oxygen atoms [δ 5.86 and 3.73(d, each 1H, J = 12.0 Hz, H-15), δ 5.42 and 4.36(d, each 1H, J = 13.2 Hz, H-11)], six methine groups connected to oxygen atoms [δ 5.41(H-1), 5.52(H-2), 5.08(H-3), 5.71(H-5), 5.38(H-7), 5.40(H-8)]. Also evidence in the 1 H NMR spectrum were, a 5', 6'-substituted pyridine ring [δ 8.77(dd, J = 1.6, 4.8 Hz), 8.37(dd, J = 1.6, 8.0 Hz), 7.29(dd, J = 8.0, 4.8 Hz)] and a 3-furanoyl group [δ 8.20(s, 1H), 7.49(s, 1H), 6.80(d, 1H, J = 1.2 Hz)]. The 13 C and DEPT NMR spectra showed the presence of four acetyls, ten tetrarnary carbons, fourteen methine carbons, four methylene and three methyl. The 1 H and 13 C NMR spectroscopic data of 1 were similar to those of 4 [1] indicating that these compounds have the same basic skeleton.

Download English Version:

https://daneshyari.com/en/article/1255820

Download Persian Version:

https://daneshyari.com/article/1255820

Daneshyari.com