

Chinese Chemical Letters 20 (2009) 193-196

Cytotoxic triterpenoid saponins from Ardisia pusilla

Hai Feng Tang ^{a,*}, Hou Wen Lin ^b, Xiao Li Chen ^a, Guang Cheng ^c, Yue Ping Zhao ^a, Ai Dong Wen ^a

^a Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
 ^b Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
 ^c Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
 Received 10 July 2008

Abstract

A new triterpenoid saponin, 3-O- $\{\beta\text{-}D\text{-}xylopyranosyl-}(1 \rightarrow 2)\text{-}\beta\text{-}D\text{-}glucopyranosyl-}(1 \rightarrow 4)\text{-}[\beta\text{-}D\text{-}glucopyranosyl-}(1 \rightarrow 2)]$ - α -L-arabinopyranosyl $\{-3\beta, 16\alpha, 28\alpha\text{-}trihydroxy-13\beta, 28\text{-}epoxy-}$ -oleanan-30-al (ardipusilloside III, 1), together with two known saponins, ardisiacrispins A (2) and B (3), were isolated from the whole plants of *Ardisia pusilla* A. DC. Their structures were elucidated by extensive spectral analysis and chemical evidences. Saponins 1 and 3 exhibited significant cytotoxicity against human glioblastoma U251MG cells.

© 2008 Hai Feng Tang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Ardisia pusilla; Triterpenoid saponin; Ardipusilloside III; Cytotoxic activities

Ardisia pusilla A. DC (Myrsinaceae) is a widely occurring shrub in southern China. Its whole plants, known as 'Jiu Jie Long' (Chinese name), have been used as an antidote in traditional medicine [1]. Previous chemical studies have led to the isolation of three triterpenoid saponins, ardipusillosides I, II and an unnamed saponin with significant antitumor effects in both Lewis pulmonary carcinoma and hepatocarcinoma [2–5]. In this paper, we report the isolation and structural elucidation of a new minor triterpenoid saponin named ardipusilloside III (1), along with two known saponins, ardisiacrispin A (2), 3-O-{β-D-xylopyranosyl-(1 \rightarrow 2)-β-D-glucopyranosyl-(1 \rightarrow 4)-[β-D-glucopyranosyl-(1 \rightarrow 2)]-α-L-arabinopyranosyl-(1 \rightarrow 4)-[β-D-glucopyranosyl-(1 \rightarrow 2)]-α-L-arabinopyranosyl} cyclamiritin A (Fig. 1) [6,7]. Saponins 1 and 3 showed potential cytotoxicity against human glioblastoma U251MG cells.

Compound 1, a colorless amorphous powder, mp 240–241 °C, $[\alpha]_D^{22} - 3.6$ (c 0.15, MeOH), was positive to Liebermann–Burchard and Molish tests. The molecular formula was established as $C_{52}H_{84}O_{23}$ by the pseudomolecular ion $[M+Na]^+$ at m/z 1099.5310 (calcd. 1099.5301) in the positive HR–ESI–MS and pseudomolecular ion $[M-H]^-$ at m/z 1075 in the negative ESI–MS. Both the pseudomolecular ions were 16 mass units larger than those of the known saponin 2. Its negative ESI–MS/MS (parent ion at m/z 1075) showed significant fragment peaks at m/z 943 $[1075-132]^-$, 913 $[1075-162]^-$, 781 $[943-162]^-$, 619 $[781-162]^-$, and 487 $[619-132]^-$. Compound 1 displayed

E-mail address: tanghaifeng71@163.com (H.F. Tang).

^{*} Corresponding author.

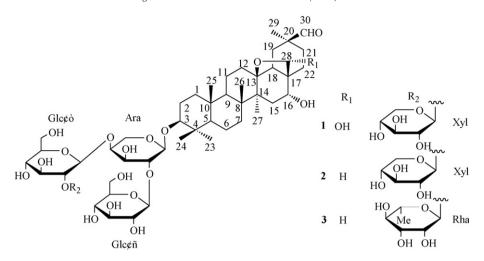


Fig. 1. Structures of saponin 1, 2 and 3.

52 carbon signals in its 13 C NMR spectrum, of which 30 could be assigned to the signals of the aglycone. It was evident that **1** was a triterpenoid saponin related to oleanane skeleton based on the 1 H NMR spectral signals (Table 1) assigned to six tertiary methyl groups at δ 0.81, 1.00, 1.06, 1.18, 1.29 and 1.55, together with six corresponding sp³ carbon signals in the 13 C NMR spectrum (Table 1). The presence of an aldehyde group at C-30 was deduced from the NMR

Table 1 1 H (600 MHz) and 13 C NMR (150 MHz) data of ardipusilloside III (1) in C₅D₅N (δ in ppm, J in Hz).

Position	$\delta_{ m H}$	$\delta_{ m C}$	Position	$\delta_{ m H}$	$\delta_{ m C}$
1	1.60 brd (13.2), 0.79 m	39.1	Ara		
2	2.00 m, 1.81 m	26.5	1	4.80 d (5.4)	104.3
3	3.13 dd (11.4, 4.2)	89.0	2	4.51 m	79.9
4	_	39.5	3	4.25 m	73.5
5	0.64 d (11.4)	55.6	4	4.20 m	78.8
6	1.39 m	17.9	5	3.64 brd (10.8), 4.60 brd (12.0)	63.6
7	1.50 m, 1.18 m	34.2	Glc I		
8	- .	42.5	1	5.48 d (7.8)	104.7
9	1.21 d (12.6)	50.4	2	4.04 m	76.2
10	_	36.7	3	4.21 m	78.2
11	1.66 m, 1.41 m	19.1	4	4.16 m	71.9
12	2.58 m, 2.04 m	31.1	5	3.97 m	78.0
13	- .	87.2	6	4.50 m, 4.34 dd (11.4, 4.2)	62.8
14	_	44.9	Glc II		
15	2.18 dd (13.8, 4.8), 1.48 m	36.9	1	5.05 d (7.8)	104.1
16	4.20 m	76.1	2	3.92 t (9.0)	85.2
17	_	42.4	3	4.17 m	77.4
18	1.86 m	49.1	4	4.14 m	71.0
19	2.15 m	34.4	5	3.75 m	78.3
20	- .	48.5	6	4.38 dd (11.4, 3.6), 4.24 m	62.2
21	2.57 m	30.8	Xyl		
22	1.99 m, 1.84 m	28.1	1	4.94 d (7.8)	107.5
23	1.18 s	28.0	2	3.96 m	75.9
24	1.00 s	16.6	3	3.99 m	77.6
25	0.81 s	16.3	4	4.08 m	70.6
26	1.29 s	18.5	5	4.53 m, 3.71 m	67.2
27	1.55 s	19.7			
28	5.12 s	99.2			
29	1.06 s	24.3			
30	9.70 s	207.9			

Download English Version:

https://daneshyari.com/en/article/1256011

Download Persian Version:

https://daneshyari.com/article/1256011

Daneshyari.com