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Abstract In this article, the modified extended tanh-function method is employed to solve

fractional partial differential equations in the sense of the modified Riemann–Liouville derivative.

Based on a nonlinear fractional complex transformation, certain fractional partial differential

equations can be turned into nonlinear ordinary differential equations of integer orders. For

illustrating the validity of this method, we apply it to four nonlinear equations namely, the

space–time fractional generalized nonlinear Hirota–Satsuma coupled KdV equations, the space–

time fractional nonlinear Whitham–Broer–Kaup equations, the space–time fractional nonlinear

coupled Burgers equations and the space–time fractional nonlinear coupled mKdV equations.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Fractional differential equations are the generalizations of
classical differential equations with integer orders. In recent
years, nonlinear fractional differential equations in mathemat-
ical physics are playing a major role in various fields, such as

physics, biology, engineering, signal processing, and control
theory, finance and fractal dynamics (Miller and Ross, 1993;
Kilbas et al., 2006; Podlubny, 1999). Finding approximate

and exact solutions to the fractional differential equations is
an important task. A large amount of literatures were devel-
oped concerning the solutions of the fractional differential

equations in nonlinear dynamics (El-sayed et al., 2009). Many

powerful and efficient methods have been proposed to obtain
the numerical and exact solutions of fractional differential

equations. For example, these methods include the variational
iteration method (Safari et al., 2009); Wu and Lee, 2010; Yang
and Baleanu, 2012; Guo and Mei, 2011), the Lagrange charac-

teristic method (Jumarie, 2006a), the homotopy analysis
method (Song and Zhang, 2009), the Adomian decomposition
method (El-Sayed and Gaber, 2006; El-sayed et al., 2010), the

homotopy perturbation method (He, 1999; He, 2000; Yildirim
and Gulkanat, 2010), the differential transformation method
(Odibat and Momani, 2008), the finite difference method
(Cui, 2009), the finite element method (Huang et al., 2009),

the fractional sub-equation method (Zhang and Zhang, 2011;
Guo et al., 2012; Lu, 2012), the (G0/G)-expansion method
(Zheng, 2012; Gepreel and Omran, 2011; Younis and Zafar,

2013), the modified extended tanh-function method
(El-Wakil et al., 2005; El-Wakil et al., 2002; Soliman, 2006;
Dai and Wang, 2014), the fractional complex transformation
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method (Li and He, 2010; Li, 2010; He and Li, Li et al., 2012;
Hristov, 2010), the exp-function method (He, 2013), the simi-
larity transformation method (Dai et al., 2013; Zhu, 2013),

the Hirota method (Liu et al., 2013) and so on.
The objective of this paper is to apply the modified

extended tanh-function method for solving fractional

partial differential equations in the sense of the modified
Riemann–Liouville derivative which has been derived by
(Jumarie, 2006b). These equations can be reduced into nonlin-

ear ordinary differential equations (ODE) with integer orders
using some fractional complex transformations. Jumarie’s
modified Riemann–Liouville derivative of order a is defined
by the following expression:

Da
t fðtÞ ¼

1
Cð1�aÞ

d
dt

R t

0
ðt� gÞ�a½fðgÞ � fð0Þ�dg; 0 < a 6 1;

fðnÞðtÞ
� �ða�nÞ

; n 6 a < nþ 1; n P 1

(

We list some important properties for the modified
Riemann–Liouville derivative as follows:

Da
t t

r ¼ Cð1þ rÞ
Cð1þ r� aÞ t

r�a; r > 0 ð1Þ

Da
t fðtÞgðtÞ½ � ¼ fðtÞDa

t gðtÞ þ gðtÞDa
t fðtÞ ð2Þ

Da
t fðgðtÞÞ½ � ¼ f0gðgðtÞÞDa

t gðtÞ ð3Þ

Da
t fðgðtÞÞ½ � ¼ Da

gfðgðtÞÞ½g0ðtÞ�
a ð4Þ

where C denotes the Gamma function.
The rest of this paper is organized as follows: In Section 2,

the description of the modified extended tanh-function method

for solving nonlinear fractional partial differential equations is
given. In Section 3, we apply this method to establish the exact
solutions for the space–time fractional generalized nonlinear
Hirota–Satsuma coupled KdV equations, the space–time

fractional nonlinear Whitham–Broer– Kaup equations, the
space–time fractional nonlinear coupled Burgers equations
and the space–time fractional nonlinear coupled mKdV equa-

tions. In Section 4 physical explanations of some obtained
solutions are given. In Section 5, some conclusions are
obtained.

2. Description the modified extended tanh-function method for

solving nonlinear fractional partial differential equations

Suppose we have the following nonlinear fractional partial dif-
ferential equation:

Fðu;Da
t u;D

a
xu; :::Þ ¼ 0; 0 < a 6 1; ð5Þ

where Da
t u and Da

xu are the modified Riemann–Liouville deriv-
atives and F is a polynomial in u = u(x,t) and its fractional
derivatives. In the following, we give the main steps of this
method:

Step 1: Using the nonlinear fractional complex transforma-
tion (Li and He, 2010; Li, 2010; He and Li, 2012; Li et al.,
2012; Hristov, 2010).

uðx; tÞ ¼ uðnÞ; n ¼ kxa

Cð1þ aÞ þ
cta

Cð1þ aÞ þ n0; ð6Þ

where k,c,n0 are constants with k,c „ 0, to reduce Eq. (5) to the
following ODE of integer order with respect to the variable n :

Pðu; u0; u00; :::Þ ¼ 0; ð7Þ

where P is a polynomial in u(n) and its total derivatives

u0,u00,u000,. . . such that u0 ¼ du
dn ; u

00 ¼ d2u
dn2
; . . ...

Step 2: We suppose that the formal solution of the ODE (7)

can be expressed as follows:

uðnÞ ¼ a0 þ
XN
i¼1
½ai/iðnÞ þ bi/

�iðnÞ�; ð8Þ

where /(n) satisfies the Riccati equation

/0 ¼ bþ /2; ð9Þ

where b is a constant. Fortunately, Eq. (9) admits several types

of the following solutions:

(i) If b< 0, we have the hyperbolic solutions;

/ðnÞ ¼ �
ffiffiffiffiffiffiffi
�b
p

tanhð
ffiffiffiffiffiffiffi
�b
p

nÞ;/ðnÞ ¼ �
ffiffiffiffiffiffiffi
�b
p

cothð
ffiffiffiffiffiffiffi
�b
p

nÞ: ð10Þ

(ii) If b> 0, we have the trigonometric solutions;

/ðnÞ ¼
ffiffiffi
b
p

tanð
ffiffiffi
b
p

nÞ;/ðnÞ ¼ �
ffiffiffi
b
p

cotð
ffiffiffi
b
p

nÞ: ð11Þ

(iii) If b=0, we have the rational solutions;

/ðnÞ ¼ �1
nþ d

; ð12Þ

where d is a constant.
Step 3: We determine the positive integer N in (8) by

balancing the highest nonlinear terms and the highest order

derivatives of u(n) in Eq. (7).
Step 4: We substitute (8) along with Eq. (9) into Eq. (7) and

equate all the coefficients of /i(i = 0, ± 1, ± 2,...) to zero to

yield a system of algebraic equations for ai,bi,c,k, b.
Step 5: We solve the algebraic equations obtained in Step 4

using Mathematica or Maple, and use the well- known

solutions (10)–(12) of Eq. (9) to obtain the exact solutions of
Eq. (5).

3. Applications

In this section, we construct the exact solutions of the follow-
ing four nonlinear fractional partial differential equations

using the proposed method of Section 2:

Example 1. The Space–time fractional generalized nonlinear
Hirota–Satsuma coupled KdV equations.

These equations are well-known (Guo et al., 2012; Zheng,
2012) and have the forms:

Da
t u�

1

2
D3a

x uþ 3uDa
xu� 3Da

xðvwÞ ¼ 0; ð13Þ

Da
t vþD3a

x v� 3uDa
xv ¼ 0; ð14Þ

Da
t wþD3a

x w� 3uDa
xw ¼ 0; ð15Þ

where 0 < a 6 1. Eqs. (13)–(15) can be used to describe the
iteration of two long waves with different dispersion relations
(Abazari and Abazari, 2012). When a = 1, Eqs. (13)–(15) were
first proposed in (Wu and Geng, 1999). When 0 < a 6 1, Eqs.

(13)–(15) have been discussed in (Zheng, 2012) using the (G0/G)-
expansion method and in ( Guo et al, 2012) using the fractional
sub-equation method. Let us now solve Eqs. (13)–(15) using the
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