

Available online at www.sciencedirect.com

JOURNAL OF RARE EARTHS, Vol. 34, No. 3, Mar. 2016, P. 295

Preparation and performance of CeO₂ hollow spheres and nanoparticles

ZHANG Wenwen (张问问), CHEN Donghui (陈东辉)*

(College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China)

Received 21 August 2015; revised 26 October 2015

Abstract: CeO₂ hollow spheres were synthesized by polystryrene sphere (PS) templates and CeO₂ nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy (SEM), N₂ adsorption-desorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-vis diffuse reflectance spectra. The results showed that the structure of the obtained CeO₂ hollow spheres was hollow microsphere with a diameter of 380 nm and the average particle size of CeO₂ nanoparticles was about 1700 nm. The two samples' Brunauer-Emmett-Teller (BET) surface area was 67.1 and 37.2 m²/g. The CeO₂ hollow spheres had a better performance than nanoparticles at UV-shielding because of higher surface area and the structure of hollow sphere.

Keywords: CeO₂; UV-shielding; hollow spheres; template; Rh B; rare earths

In recent years, people gradually realize that UV-light can induce photochemical reaction and then change our bodies' function, especially do harm to our skin, eyes and immune system. TiO_2 and $ZnO^{[1-3]}$ are the commonly used UV-shielding materials. But their high photocatalytic activity can oxidize and degrade other ingredients. The study finds that CeO_2 also has a potential usage as UV-shielding material^[4].

CeO₂ is one of the most important functional rare earth metal oxides, widely used in catalysis^[5,6], fuel cell^[7], absorbents for water treatment^[8,9], UV blocker^[10–12] and CO oxidation^[13–15] due to its high mechanical strength, oxygen ion conductivity, optical property, thermal stability, and oxygen storage capacity. Recently, the structure of hollow sphere has attracted worldwide interest because of its unique shape and attractive properties. However, most people spend their time on the properties of catalysis and CO oxidation^[16–19]. CeO₂ hollow spheres have seldom been used as a UV-shielding material.

Herein, we prepared two different morphologies of CeO₂. One of them used PS microspheres as template, Ce(NO₃)·6H₂O as the source of cerium and NaOH as precipitant to synthesize CeO₂ hollow spheres and the other used Ce(NO₃)·6H₂O and NaOH to synthesis CeO₂ nanoparticles. To research their properties in UV-shielding, we adopted UV-vis diffuse reflectance spectra and the self-decolorization of rhodamine B solution (Rh B) in UV light.

1 Experimental

1.1 Preparation of CeO₂ nanoparticle and hollow spheres

CeO₂ nanoparticle: 30 mL cerium solution (0.002 mol Ce(NO₃)·6H₂O in 20 mL deionized water) was added in a three-neck flask and then the solution was heated to 65 °C at a suitable stirring rate for 30 min. And inject 20 mL solution (0.22 g NaOH in 20 mL deionized water), keep the temperature and stirring rate for 2 h and then stop heating, go on stirring for 2 h. In the end the suspension was centrifuged and washed with ethanol and water for two times, respectively and dried at 70 °C, then calcinated for 2 h at 500 °C.

CeO₂ hollow spheres: First we synthesized PS microspheres by soap-free emulsion polymerization^[5]. And then weigh 4.0 g PS (solid content of 5%) microspheres suspension in a three-neck flack and add 50 mL deionized water, then ultrasonic for 10 min. The mixture solution was heated to 65 °C at a suitable stirring rate for 30 min. And then add 20 mL cerium solution (0.002 mol Ce(NO₃)·6H₂O in 20 mL deionized water). Two hours later, inject 20 mL solution (0.22 g NaOH in 20 mL deionized water), keep the temperature and stirring rate for 2 h and then stop heating, go on stirring 2 h. In the end, the suspension was centrifuged and washed with ethanol and water for two times, respectively and dried at 70 °C, then calcinated 2 h at 500 °C.

1.2 Characterization

The surface morphologies of samples were characterized by a HITACHI S-3400N scanning electron microscope at an accelerating voltage of 15 kV. Nitrogen adsorption and desorption experiments were performed at 77 K on a NOVA4000 gas adsorption analyzer (Quantachrome Corp.). The average diameter of the obtained

Foundation item: Project supported by the Capacity Building Program of Shanghai Local Universities (12160503600)

^{*} Corresponding author: CHEN Donghui (E-mail: chendhisit@163.com; Tel.: +86-21-6087132) DOI: 10.1016/S1002-0721(16)60028-5

samples was measured by Zetasizer Nano ZS (Malvern Instrument Ltd.). A PANalytical X'Pert PRO X-ray diffractometer with Cu K α (λ =0.15418 nm) incident radiation was employed to analyze the crystal structure of the materials. The X-ray diffraction (XRD) patterns were obtained for 2 θ angles from 20° to 90° at a scan rate of 0.02 (°)/min. Beijing Beifen-Ruili Analytical Instruments Fourier infrared spectrometer WQF-520 was used to analyze the FT-IR spectrogram of samples by powder tabletting method. UV absorption properties of the synthetic samples were determined by Beijing Purkinje General Instrument production of TU-1900.

The UV-shielding performance of CeO₂ hollow spheres and CeO₂ nanoparticles was also shown by the self- decolorization rate of Rh B solution in a photochemical reactor (Bilang, China), equipped with a 800 W mercury lamp as the UV-light source, which was about 10 cm from the liquid surface of the suspensions to the mercury lamp. 20 mg samples were added in 50 mL 10 mg/L Rh B solution under constant magnetic stirring. Before light up, the suspension was stirred for 1 h in dark to reach adsorption-desorption equilibrium. 4 mL suspension was timely taken out and centrifuged 3 min at a speed of 8000 r/min, the absorbance of the supernatant was measured at 554 nm. The decolorization rate W(%) was calculated according to the following formula: $W = (1 - A_t / A_o) \times 100\%$ (1)

where, A_0 is the absorbance of Rh B solution before light up and A_t the Rh B solution's absorbance at different times after treatment.

2 Results and discussion

Fig. 1 shows the SEM images of PS spheres, CeO_2 hollow spheres and CeO_2 nanoparticles. These images briefly display that uniform PS microspheres with an average diameter of 360 nm were obtained (in Fig. 1 (a)), the CeO₂ hollow spheres whose average diameter is 380 nm (in Fig. 1(b)). From Fig. 1(c), we could see that various sizes of CeO₂ nanoparticles were also prepared successfully. Fig. 1(d) displays the CeO₂ nanoparticles with an average dimension of 1700 nm. And we could easily find that the morphologies of CeO₂ hollow spheres are uniform and there are some holes on the surface of CeO₂ hollow spheres which was caused by calcining PS microspheres.

Fig. 2 shows the XRD patterns of CeO_2 hollow spheres and CeO_2 nanoparticles. From Fig. 2, we can know that all the typical CeO_2 diffraction peaks are found in the as-obtained samples. The strong and sharp peaks revealed that the products synthesized by PS template could also keep a good crystal structure of CeO_2 . No diffraction peaks from impurities were observed, which indicated the samples have good crystallization and high purity^[9].

Fig. 1 SEM images of as-synthesized PS spheres (a), CeO₂ hollow spheres (b), CeO₂ nanoparticles (c) and dimension of samples (d)

Download English Version:

https://daneshyari.com/en/article/1258330

Download Persian Version:

https://daneshyari.com/article/1258330

Daneshyari.com