

Available online at www.sciencedirect.com

Chinese Chemical Letters 19 (2008) 1089-1092

CHINESE Chemical Letters

www.elsevier.com/locate/cclet

5'-Hydroxyzearalenol, a new β -resorcylic macrolide from *Fusarium* sp. 05ABR26

Ling Ling Zhao^a, Yue Gai^a, Hisayoshi Kobayashi^b, Chang Qi Hu^{a,*}, Hui Ping Zhang^{a,*}

^a Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 200032, China ^b Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan

Received 25 February 2008

Abstract

A new β -resorcylic macrolide, 5'-hydroxyzearalenol (1), was isolated from the culture broth of a marine-derived fungus *Fusarium* sp. 05ABR26. Three known compounds, zearalenone (2), 8'-hydroxyzearalenone (3) and zearalenol (4) were also isolated. The structure and relative stereochemistry of 1 were elucidated on the basis of spectroscopic data and single-crystal X-ray diffraction data. Compound 2 displayed potent inhibitory activity against *Pyricularia oryzae* with a MIC value of 6.25 µg/mL, while compound 3 was much less active; however, 1 and 4 showed no obvious activity.

© 2008 Hui Ping Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: 5'-Hydroxyzearalenol; Fusarium sp.; X-ray diffraction data; Pyricularia oryzae

Zearalenone (2), a β -resorcylic macrolide, was first isolated in 1962 from the fungus *Gibberella zeae (Fusarium graminearum)* [1]. The major mycotoxicity of zearalenone and its metabolites is attributed to their anabolic and estrogenic activities [2]. Cytotoxic and genotoxic effects of zearalenone were also reported [3]. In our search for structurally unique and bioactive substances from marine-derived fungi [4], 5'-hydroxyzearalenol (1), a new derivative of zearalenone was isolated from the culture broth of a marine-derived fungus *Fusarium* sp. 05ABR26 together with three known compounds, which were assigned as zearalenone (2), 8'-hydroxyzearalenone (3) and zearalenol (4) [5–7]. In this paper, the structure elucidation of compounds 1–4 is described; furthermore, the bioactivity against *Pyricularia oryzae (P. oryzae)* is discussed [8].

Fusarium sp. 05ABR26, which was isolated from a sponge collected in Miura Peninsula of Japan, was fermented in a 1-l Erlenmeyer flask containing 200 mL of potato dextrose medium (a half nutrient, 50% sea water) at 20 °C for 21 days. The culture broth (1 L) was added to 1 L of 80% (v/v) aqueous acetone, and then stirred for 30 min at room temperature. After the acetone extracts were filtered and concentrated *in vacuo*, the resulting aqueous solution was extracted three times with 1 L of ethyl acetate (EtOAc). The EtOAc extract (319.1 mg) was subjected to a sephadex LH-20 column and eluted with *n*-hexane/CH₂Cl₂/MeOH (4:5:1) to give fractions E-1–E-4, and bioactivity against *P. oryzae* was detected in fractions E-2 and E-3. Fraction E-2 was separated with an ODS column (75% MeOH/H₂O) to

* Corresponding authors.

E-mail address: hpzhang@shmu.edu.cn (H.P. Zhang).

^{1001-8417/\$-}see front matter © 2008 Hui Ping Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2008.06.025

Position	$\delta_{\rm C} \ ({\rm mult}^{\rm b})$	$\delta_{\rm H}$ (mult, J in Hz)	¹ H– ¹ H COSY	HMBC ^c
1	109.6 s			3, 5
2	161.9 s			3
3	102.4 d	6.19 d (2.3)	5	5
4	162.1 s			5
5	106.7 d	6.40 d (2.3)	3	3, 1'
6	141.5 s			1', 2'
1′	130.2 d	6.60 d (16.0)	2'	5, 3'
2'	132.8 d	6.15 dt (16.0, 5.5)	1', 3'	3', 4'
3'	28.2 t	2.36 m	2', 4'	1', 2'
4'	28.7 t	1.84 m, 1.67 m	3', 5'	3'
5'	71.3 d	3.74 m ^d	4'	3', 7'
6'	75.6 d	3.75 m ^d	7′	4′
7′	33.1 t	1.69 m, 1.56 m	6'	
8'	21.5 t	1.52 m	9''	9′
9'	36.1 t	1.81 m, 1.66 m	8', 10'	10'-Me
10′	73.1 d	5.12 m	9′, 10′-Me	9', 10'-Me
12'	172.2 s	10'-Me	20.3 q	1.34 d (6.3)

Table 1 NMR data of 5'-hydroxyzearalenol (1)^a

^a Data recorded in CD₃OD on a Varian Mercury plus 400 instrument.

^b ¹³C NMR multiplicities were obtained from a DEPT-135 experiment.

^c Protons correlated to carbon resonances in the ¹³C column.

^d Signal partially overlapped.

afford **2** (25.1 mg). Fraction E-3 was further purified by repeated silica gel column chromatography (CHCl₃/EtOAc and *n*-hexane/acetone) followed by ODS column (60% MeOH/H₂O) to give **1** (9.1 mg), **3** (59.5 mg) and **4** (4.9 mg).

5'-Hydroxyzearalenol (1) was isolated as colorless crystals, with a mp 168–170 °C, $[\alpha]_D^{20.4} + 60.7$ (*c* 0.01, MeOH), and molecular formula of C₁₈H₂₄O₆ established by HRESIMS at *m/z* 335.1494 [M–H]⁻ (calcd for C₁₈H₂₃O₆ 335.1495), suggesting seven degrees of unsaturation. The IR spectral absorptions at 3565, 3347 and 1645 cm⁻¹ implied the presence of hydroxyl and conjugated ester group(s). ¹H and ¹³C NMR data for 1 were similar to those of zearalenol [6], except for additional signals due to the hydroxyl group of 1.

The ¹³C and DEPT-135 NMR spectral data showed 18 carbons including one methyl, five sp³ methylenes, four sp² methines, three sp³ methines, and five quaternary carbons. Among them, three methine carbons at δ_C 75.6 (C-6'), 73.1 (C-10') and 71.3 (C-5') were thought to have connections to oxygens. The ¹H NMR spectrum (Table 1) exhibited signals for two coupled olefinic protons at δ_H 6.15 (dt, J = 16.0 and 5.5 Hz) and 6.60 (d, J = 16.0 Hz) assigned to the H-2' and H-1' vicinal protons, respectively. The presence of a β -resorcylate group (partial structure **a**, Fig. 1) was indicated by some typical ¹H and ¹³C NMR resonances (Table 1) according to the presence of an ester group (C-12', δ 172.2), four quaternary carbons (C-1, δ 109.6; C-2, δ 161.9; C-4, δ 162.1; C-6, δ 141.5) and two coupled aromatic protons at δ_H 6.19 (d, J = 2.3 Hz, H-3) and 6.40 (d, J = 2.3 Hz, H-5). The above functionalities accounted for six out of the seven degrees of unsaturation; the one remaining degree of unsaturation therefore indicated that **1** is a macrolide.

After association all of the carbon signals with the corresponding signals for directly bonded protons *via* an HSQC experiment in CD₃OD, ¹H–¹H COSY and HMBC spectral measurements were recorded (Table 1). The ¹H–¹H COSY spectra of **1** revealed connectivity of three structural units, **b** (C-1' to C-5'), **c** (C-6' to C-7'), and **d** (C-8' to C-10'Me) as

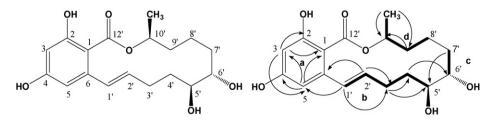


Fig. 1. The structure, key ¹H–¹H COSY (—) and HMBC (~) correlations of 1.

Download English Version:

https://daneshyari.com/en/article/1258425

Download Persian Version:

https://daneshyari.com/article/1258425

Daneshyari.com