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Abstract In this article, we consider the problem of a thermoelastic infinite body with a spherical

cavity in the context of the theory of fractional order thermoelasticity. The inner surface of the cav-

ity is taken traction free and subjected to a thermal shock. The form of a vector–matrix differential

equation has been considered for the governing equations in the Laplace transform domain. The

analytical solutions are given by the eigenvalue approach. The graphical results indicate that the

fractional parameter effect plays a significant role on all the physical quantities.
ª 2014 The Author. Production and hosting by Elsevier B.V. on behalf of University of Bahrain. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Biot (1956) modified the classical uncoupled theory of ther-
moelasticity by eliminating the paradox that elastic changes
have no effect on the temperature. The heat equations for both

theories predict infinite speeds of propagation for heat waves.
So, various generalized theories of thermoelasticity were devel-
oped. Lord and Shulman, 1967 established the first model gen-

eralized thermoelasticity theory (LS). Green and Lindsay
(1972) proposed the temperature rate dependent thermoelas-
ticity (GL) theory. During the second half of twentieth centu-

ry, a large amount of work has been devoted to solving
thermoelastic problems. This is due to their many applications

in widely diverse fields. In the contexts of the thermoelasticity

theories, the counterparts of our problem have been consid-
ered by using analytical and numerical methods (Abbas,
2008, 2012, 2014; Abbas and Abo-Dahab, 2014; Abbas and

Kumar, 2014; Abbas and Othman, 2012; Abbas and
Zenkour, 2013; Abd-alla and Abbas, 2002; Dhaliwal and
Sherief, 1980; Sherief and Anwar, 1988, 1989; Sherief et al.,
2004; Zenkour and Abbas, 2014a,b).

Fractional calculus has been used successfully to modify
many existing models of physical processes e.g., viscoelasticity,
chemistry, electronics, wave propagation and biology. One can

state that the whole theory of fractional derivatives and inte-
grals was established in the second half of the nineteenth cen-
tury. Various definitions and approaches of fractional

derivatives have become the main purpose of many studies.
Youssef (2010) and Youssef and Al-Lehaibi (2010) established
the fractional order generalized thermoelasticity of both weak

and strong heat conductivity in the context of generalized
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thermoelasticity were considered, and the corresponding
variational theorem for fractional order generalized thermoe-
lasticity was developed. A new model of fractional heat equa-

tion established by Ezzat (2011b) and Ezzat and El-Karamany
(2011a,b). In addition, Sherief et al. (2010) established a new
model by using the form of the heat conduction law. Kumar

et al. (2013) studied the plane deformation due to thermal
source in fractional order thermoelastic media.

In this work, we consider fractional order generalized ther-

moelasticity of an infinite body with spherical cavity under
thermal shock. The inversion of Laplace transform has been
carried out numerically by applying a method of numerical
inversion of Laplace transform based on Stehfest technique

(Stehfest, 1970). Numerical results for physical quantities are
represented graphically.

2. The Governing equation

The heat conduction equation takes the form, (El-Karamany
and Ezzat, 2011; Ezzat, 2011a),

KijT;j
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þ sa
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The equations of motion without body force take the form

rij;j ¼ q
@2ui
@t2

ð2Þ

.
The constitutive equations are given by

rij ¼ 2leij þ ½ke� c T� T0ð Þ�dij; ð3Þ

where T is the temperature; k; l are Lame’s constants; T0 is the
reference temperature; a is the fractional parameter; ce is the

specific heat at constant strain; Kij is the thermal conductivity;

q is the density of the medium; so is the thermal relaxation
time; rij are the components of stress tensor; t is the time; dij

is the Kronecker delta symbol; at is the coefficient of linear
thermal expansion; ui are the displacement vector components
and eij are the components of strain tensor.

Now, we suppose elastic and homogenous infinite body
with spherical cavity occupying the region a � r <1. Because

of the symmetry, all the state functions can be expressed in
terms of the space variable r and the time variable t. In a
spherical co-ordinate system ðr;/;wÞ, the displacement

components have the form

ur ¼ uðr; tÞ; u/ ¼ uw ¼ 0: ð4Þ

The strain–displacement relations are
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Thus, the stress–strain relations are
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The equation of motion and energy equation have the form:
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For simplicity, we will use the following non-dimensional
variables (Othman and Abbas, 2012).

ðr0; u0Þ ¼ r; uð Þ
cv

; ðt0; s0oÞ ¼
t; soð Þ
v

; ðr0rr; r0//; r
0
wwÞ

¼ 1
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where, c2 ¼ kþ2l
q ; v ¼ K

qcec2
:

From Eq. (12) into Eqs. (7)–(11) one may obtain (after
dropping the superscript 0 for convenience)
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where b ¼ k
kþ2l ; e ¼ cT0

q2c2ce
:

From preceding description, we assume that the medium is

initially at rest. The undisturbed state is maintained at refer-
ence temperature. Then we have

uðr; 0Þ ¼ @uðr; 0Þ
@t

¼ 0; Tðr; 0Þ ¼ @Tðr; 0Þ
@t

¼ 0: ð17Þ

The boundary conditions may be expressed as

rrrða; tÞ ¼ 0; Tða; tÞ ¼ HðtÞ;
rrrðr; tÞjr!1 ¼ 0; Tðr; tÞjr!1 ¼ 0; ð18Þ

where HðtÞ is the Heaviside unit step function.

3. Laplace Transform domain

Applying the Laplace transform define by the formula

�fðsÞ ¼ L½fðtÞ� ¼
Z 1

0

fðtÞe�stdt: ð19Þ

Hence, the Eqs. (13)–(18) take the form
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