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Abstract Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the

internal mechanism of complex physical phenomena. In this article, we implemented the modified

simple equation (MSE) method for finding the exact solutions of NLEEs via the (2+1)-dimensional

cubic Klein–Gordon (cKG) equation and the (3+1)-dimensional Zakharov–Kuznetsov (ZK) equa-

tion and achieve exact solutions involving parameters. When the parameters are assigned special

values, solitary wave solutions are originated from the exact solutions. It is established that the

MSE method offers a further influential mathematical tool for constructing exact solutions of

NLEEs in mathematical physics.
ª 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Nonlinear phenomena exist in all areas of science and engi-
neering, such as fluid mechanics, plasma physics, optical fibers,

biology, solid state physics, chemical kinematics, chemical

physics and so on. It is well known that many NLEEs are
widely used to describe these complex physical phenomena.
Therefore, research to look for exact solutions of NLEEs is ex-

tremely crucial. So, to find effective methods to discover ana-
lytic and numerical solutions of nonlinear equations have
drawn an abundance of interest by a diverse group of research-

ers. Accordingly, they established many powerful and efficient
methods and techniques to explore the exact traveling wave
solutions of nonlinear physical phenomena, such as, the Hiro-
ta’s bilinear transformation method (Hirota, 1973; Hirota and

Satsuma, 1981), the tanh-function method (Malfliet, 1992;
Nassar et al., 2011), the (G0/G)-expansion method (Wang
et al., 2008; Zayed, 2010; Zayed and Gepreel, 2009; Akbar

et al., 2012a,b,c,d; Akbar and Ali, 2011a; Shehata, 2010), the
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Exp-function method (He and Wu, 2006; Akbar and Ali,
2011b; Naher et al., 2011, 2012), the homogeneous balance
method (Wang, 1995; Zayed et al., 2004), the F-expansion

method (Zhou et al., 2003), the Adomian decomposition meth-
od (Adomian, 1994), the homotopy perturbation method
(Mohiud-Din, 2007), the extended tanh-method (Abdou,

2007; Fan, 2000), the auxiliary equation method (Sirendaoreji,
2004), the Jacobi elliptic function method (Ali, 2011), Weierst-
rass elliptic function method (Liang et al., 2011), modified

Exp-function method (He et al., 2012), the modified simple
equation method (Jawad et al., 2010; Zayed, 2011a, Zayed
and Ibrahim, 2012; Zayed and Arnous, 2012), the extended
multiple Riccati equations expansion method (Gepreel and

Shehata, 2012; Gepreel, 2011a; Zayed and Gepreel, 2011)
and others (Gepreel, 2011b,c).

The objective of this article is to look for new study relating

to the MSE method to examine exact solutions to the cele-
brated (2+1)-dimensional cKG equation and the (3+1)-
dimensional ZK equations to establish the advantages and

effectiveness of the method. The cKG equation is used to mod-
el many different nonlinear phenomena, including the propa-
gation of dislocation in crystals and the behavior of

elementary particles and the propagation of fluxions in Joseph-
son junctions. The (3+1)-dimensional Zakharov–Kuznetsov
equation describes weakly nonlinear wave process in dispersive
and isotropic media e.g., waves in magnetized plasma or water

waves in shear flows.
The article is organized as follows: In Section 2, the MSE

method is discussed. In Section 3 we exert this method to the

nonlinear evolution equations pointed out above, in Section 4
physical explanation, in Section 5 comparisons and in Section 6
conclusions are given.

2. The MSE method

Suppose the nonlinear evolution equation is in the form,

Fðu; ut; ux; uy; uz; uxx; utt; . . .Þ ¼ 0; ð2:1Þ

where F is a polynomial of u(x,y,z, t) and its partial derivatives
wherein the highest order derivatives and nonlinear terms are
involved. The main steps of the MSE method (Jawad et al.,

2010; Zayed, 2011a; Zayed and Ibrahim, 2012; Zayed and Ar-
nous, 2012) are as follows:

Step 1: The traveling wave transformation,

uðx; y; z; tÞ ¼ uðnÞ; n ¼ xþ yþ z� kt ð2:2Þ

allows us to reduce Eq. (2.1) into the following ordinary differ-
ential equation (ODE):

Pðu; u0; u00; . . .Þ ¼ 0; ð2:3Þ

where P is a polynomial in u(n) and its derivatives, while
u0ðnÞ ¼ du

dn.

Step 2: We suppose that Eq. (2.3) has the solution in the
form

uðnÞ ¼
Xn
i¼0

Ci

/0ðnÞ
/ðnÞ

� �i

; ð2:4Þ

where Ci(i= 0, 1, 2, 3,. . .) are arbitrary constants to be deter-

mined, such that Cn „ 0 and /(n) is an unspecified function to
be found out afterward.

Step 3: We determine the positive integer n appearing in Eq.

(2.4) by considering the homogeneous balance between the
highest order derivatives and the highest order nonlinear
terms come out in Eq. (2.3).
Step 4: We substitute Eq. (2.4) into (2.3) and then we

account the function /(n). As a result of this substitution,
we get a polynomial of (/0(n)//(n)) and its derivatives. In
this polynomial, we equate the coefficients of same power

of /�j(n) to zero, where j P 0. This procedure yields a sys-
tem of equations which can be solved to find Ci,/(n) and /
0(n). Then the substitution of the values of Ci, /(n) and /0(n)
into Eq. (2.4) completes the determination of exact solu-
tions of Eq. (2.1).

3. Applications

3.1. The (2+1)-dimensional cubic Klein–Gordon (cKG)

equation

In this sub-section, first we will exert the MSE method to find

the exact solutions and solitary wave solutions of the cele-
brated (2+1)-dimensional cKG equation,

uxx þ uyy � utt þ auþ bu3 ¼ 0 ð3:1Þ

where a and b are non zero constants.

The traveling wave transformation

u ¼ uðx; y; tÞ; n ¼ xþ y� kt; uðx; y; tÞ ¼ uðnÞ; ð3:2Þ

transforms the Eq. (3.1) to the following ODE:

ð2� k2Þu00 þ auþ bu3 ¼ 0: ð3:3Þ

Balancing the highest order derivative and nonlinear term of

the highest order, yields n= 1.
Thus, the solution Eq. (2.4) takes the form,

uðnÞ ¼ C0 þ C1

/0ðnÞ
/ðnÞ

� �
; ð3:4Þ

where C0 and C1 are constants such that C1 „ 0, and /(n) is an
unspecified function to be determined. It is simple to calculate
that

u0 ¼ C1

/00
/
� /0

/

� �2
 !

; ð3:5Þ

u00 ¼ C1

/000
/

� �
� 3C1

/00/0
/2

� �
þ 2C1

/0
/

� �3

; ð3:6Þ

u3 ¼ C3
1

/0
/

� �3

þ 3C2
1C0

/0
/

� �2

þ 3C1C
2
0

/0
/

� �
þ C3

0: ð3:7Þ

Substituting the values of u, u00, and u3 into Eq. (3.3) and

equating the coefficients of /0,/�1,/�2,/�3 to zero, yields

aC0 þ bC3
0 ¼ 0: ð3:8Þ

ðk2 � 2Þ/000 � aþ 3bC2
0

� �
/0 ¼ 0; ð3:9Þ

ðk2 � 2Þ/00 þ bC0C1/
0 ¼ 0; ð3:10Þ

bC3
1 � 2ðk2 � 2ÞC1

� �
ð/0Þ3 ¼ 0: ð3:11Þ

Solving Eq. (3.8), we obtain
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