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Abstract

In the present paper it is shown that zero symmetric prime right near-rings satisfying certain identities are commutative rings.
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1.  Introduction

In this paper N  will denote a zero symmetric right
near-ring (i.e., a right near ring N  satisfying the property
x · 0 = 0 for all x ∈  N). Note that the right distributiv-
ity in N  gives 0 · x = 0 for all x  ∈ N. For any x, y ∈  N
the symbol [x, y] will denote the commutator xy  −  yx;
while the symbol x ◦  y will stand for the anti-commutator
xy + yx. The symbol Z(N) will represent the multiplica-
tive center of N, that is, Z(N) = {x  ∈  N  |  xy  = yx  for all
y ∈  N}. In the remainder part of this paper, unless other-
wise specified, we will use the word near-ring to mean
zero symmetric right near-ring and denote xy  instead
of x  · y. An additive mapping d : N  →  N  is said to be
a derivation if d(xy) = xd(y) + d(x)y  for all x, y ∈  N, or
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equivalently, as noted in [16], that d(xy) = d(x)y  + xd(y)
for all x, y ∈  N. According to [9], a near-ring N  is said to
be prime if xNy  = {0}  for all x, y  ∈  N  implies x = 0 or y  = 0.
Recently, there has been a great deal of work concern-
ing commutativity of prime and semi-prime rings with
derivations satisfying certain differential identities (see
[2,8,10,15] for reference where further references can
be found). In view of these results many authors have
investigated commutativity of prime near-rings satisfy-
ing certain polynomial conditions (see [3–6,9–14,16],
etc.). In the present paper it is shown that a near-rings
with derivations satisfying certain identities are commu-
tative rings.

2.  Main  results

We facilitate our discussion with the following lem-
mas which are required for developing the proofs of our
main theorems. Note that the proofs of Lemmas 1, 3 and
4 can be seen in [7, Theorem 2.1], [4, Theorem 4.1]
and [9, Lemma 3], respectively. Similar results can be
obtained for right near-ring.

Lemma  1.  Let  N be  a  prime  near-ring.  If  N admits  a
nonzero derivation  d  for  which  d(N) ⊂  Z(N),  then  N  is  a
commutative ring.
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Lemma  2.  Let  d be an  arbitrary  derivation  on  the  near-
ring N.  Then  N  satisfies  the  following  partial  distributive
law:

(i) z(d(x)y  + xd(y)) = zd(x)y  + zxd(y) for  all  x, y ∈  N.
(ii) z(xd(y) + d(x)y) = zxd(y) + zd(x)y  for  all  x, y  ∈  N.

Proof. (i) By the simple calculation of
d(z(xy)) = d((zx)y) we obtain the required result.
Proof of (ii) can be seen in [1]. �

Lemma 3.  Let  N  be  a  2-torsion  free  prime  near-ring.
If N  admits  a  nonzero  derivation  d  such  that  d([x, y]) = 0
for all  x, y  ∈ N,  then  N  is  a commutative  ring.

Lemma 4.  Let  N  be  a  2-torsion  free  prime  near-ring.
If N  admits  a derivation  d  such  that  d2 = 0,  then  d  = 0.

Theorem 1.  Let  N  be  a  prime  near-ring  which  admits  a
nonzero derivation  d.  Then  the  following  assertions  are
equivalent

(i) d([x, y]) = [d(x), y] for  all  x, y ∈  N.
(ii) [d(x), y] = [x, y] for  all  x, y  ∈  N.
(iii) N  is  a commutative  ring.

Proof.  It is easy to verify that (iii) ⇒  (i) and (iii) ⇒  (ii).
(i) ⇒  (iii) Assume that

d([x,  y]) =  [d(x),  y] for all x,  y  ∈  N.  (1)

Replacing y by yx  in (1) we get

[d(x),  yx] =  d([x,  y]x) for all x,  y  ∈  N.  (2)

By definition of d, (2) reduced to

xyd(x) =  yd(x)x  for all x,  y  ∈  N.  (3)

Substituting yz  for y  in (3) where z  ∈ N, we obtain [x,
y]zd(x) = 0 which leads to

[x,  y]Nd(x) =  {0}  for all x,  y  ∈  N.  (4)

Since N  is prime, Eq. (4) yields

d(x) =  0 or [x,  y] =  0 for all x,  y  ∈  N.  (5)

From (5) it follows that for each fixed x  ∈  N  we have

d(x) =  0 or x  ∈  Z(N).  (6)

But x ∈  Z(N) also implies that d(x) ∈  Z(N) and (6)
forces d(x) ∈  Z(N) for all x  ∈  N, hence d(N) ⊂  Z(N) and
using Lemma 1, we conclude that N  is a commutative
ring.

(ii) ⇒  (iii) Suppose that

[d(x),  y] =  [x,  y] for all x,  y ∈  N.  (7)

Replacing x  by xy  in (7), because of [xy, y] = [x, y]y,
we get

[d(xy),  y] =  [x,  y]y  =  [d(x),  y]y  for all x,  y  ∈  N.

In view of Lemma 2(i), the last equation can be rewrit-
ten as

d(x)y2 +  xd(y)y  −  yxd(y) −  yd(x)y  =  d(x)y2 −  yd(x)y,

so that

xd(y)y  =  yxd(y) for all x,  y  ∈  N.  (8)

Since Eq. (8) is the same as Eq. (3), arguing as in the
proof of (i) ⇒  (iii) we find that N  is a commutative ring.
�
Theorem 2.  Let  N  be  a  2-torsion  free  prime  near-ring
which admits  a  nonzero  derivation  d. Then  the  following
assertions are  equivalent

(i) d([x, y]) ∈  Z(N) for  all  x, y ∈ N.
(ii) N  is  a commutative  ring.

Proof.  It is clear that (ii) ⇒  (i).
(i) ⇒  (ii). We are given that

d([x,  y]) ∈  Z(N) for all x,  y  ∈  N.  (9)

(a) If Z(N) = {0}, it follows d([x, y]) = 0 for all x, y  ∈  N.
By Lemma 3, we conclude that N  is a commutative ring.

(b) If Z(N) /=  {0}, replacing y by yz  in (9), where
z ∈  Z(N), we get

d([x,  y])z  +  [x,  y]d(z) ∈ Z(N)

for all x,  y ∈ N,  z ∈  Z(N).  (10)

Using (9) together with Lemma 2(i), Eq. (10) implies

[x,  y]d(z) ∈  Z(N) for all x,  y  ∈  N,  z  ∈  Z(N).

Accordingly, 0 = [[x, y]d(z), t] = [[x, y], t]d(z) for all
t ∈ N  and thus

[[x,  y],  t]Nd(z) =  {0}
for all x,  y,  t ∈ N,  z  ∈ Z(N).  (11)

Using the primeness of N, from (11) it follows that

d(Z(N)) =  {0}  or [[x,  y],  t] =  0 for all x,  y,  t  ∈  N.

Assume that [[x, y], t] = 0 for all x, y, t  ∈  N; substituting
yx for y  we get [[x, y]x, t] = 0 and therefore [x, y][x, t] = 0
for all x, y, t ∈  N. As [x, y] ∈  Z(N), hence

[x,  y]N[x,  y] =  {0}  for all x,  y  ∈  N.  (12)
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