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Abstract: Samples of cerium-manganese oxides supported on modified glass-fiber with different Ce/Mn molar ratios (Ce-Mn/GF) 
were prepared by an impregnation method and tested for low-temperature (80–180 ºC) selective catalytic reduction (SCR) of NO with 
ammonia. This brand-new technology could remove NO and particles matter from coal-fired flue gas. The surface properties of the 
catalysts were examined by means of Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffraction 
(XRD), and scanning electron microscopy (SEM). The experimental results showed that the catalyst with a Ce/Mn molar ratio of 0.2 
obtained high activity of 87.4% NO conversion at 150 ºC under a high space velocity of 50000 h–1. Deactivation poisoned by SO2 still 
occurred, but the Ce-Mn/GF(0.2) catalyst performed desirable tolerance to SO2 with decreasing 50% in 40 min and then maintaining 
at about 30% NO conversion. Characterization results indicated that the excellent low-temperature catalytic activity was related to the 
high specific surface area, pore structure, and amorphous phase. 
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Selective catalytic reduction (SCR) of NOx with am-
monia is an efficient technology for reducing NOx emit-
ted from stationary sources[1]. The general reaction is as 
follows: 4NO+4NH3+O2→4N2+6H2O. Commercial cata-
lysts for the above process are V2O5/TiO2 catalyst pro-
moted by WO3

[2]. However, this catalyst is active within 
a narrow temperature range of 300–400 ºC, while in or-
der to avoid the deactivation by SO2 and dust, SCR reac-
tor is suggested to be located after the particle control 
and the desulfurizer devices, where the flue gas tem-
perature is usually below 150 ºC[3,4]. Flue gas preheating 
causes increasing of installation and operation casts. Be-
sides, there are still residual particle and SO2 remaining 
after the particle control and desulfurizer devices. There-
fore, there is a great interest to develop superior catalysts 
with high activities at low temperature (150–160 ºC). 
And such a catalyst would also possess the advantage of 
de-dusting capability and SO2 resistance. 

Manganese oxides (MnOx) have been studied exten-
sively as low-temperature SCR catalysts because of their 
multivalent nature and various types of labile oxygen, 
which are necessary to complete a catalytic cycle[5]. The 
MnOx or Mn-based catalysts, such as MnOx/CNTs[6], 
MnOx/TiO2 

[7], and unsupported MnOx
 [8] have shown to be 

active at low-temperature for NO removal. However, 

these catalysts are easily deactivated in the presence of 
SO2. As a promoter, CeO2 has attracted considerable in-
terest because of its large oxygen storage capacity and 
unique redox properties, which stores and releases oxy-
gen via the redox shift between Ce3+ and Ce4+ under oxi-
dizing and reducing conditions. Ceria should enhance the 
oxidization of NO to NO2, thereby increases the activity 
of SCR of NO by ammonia[9]. Gu et al.[10] indicated that 
CeO2 had strong SO2 resistance due to its surface sul-
fation. Moreover, catalyst supports are also believed to 
be important for SCR performance as they possess high 
surface areas, good thermal stability, and high active 
substance dispersion on surfaces[11,12]. Chen et al.[13] 
modified the glass-fiber with 2 mol/L hydrochloric acid 
and found that mild corrosion could generate steady non- 
micropore on the surface of glass-fiber, which is propi-
tious for catalyst carriers. They also proved high effi-
ciency of fiber catalyst. Glass-fiber has been selected as 
catalyst supports in some areas due to its reasonable price, 
good physical and chemical properties, such as CO re-
moving and hydrosilylation reactions[14,15], but reports 
focused less on its application of NO removing. 

For the reason above, Ce-Mn mixed oxides supported 
on glass-fiber are believed to be a potential catalyst with 
high activity, de-dusting capability, and SO2 resistance. 
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However, there have been few reports that focused on 
selecting glass-fiber as Ce-Mn mixed oxides carriers, so 
the great challenge of this work is to obtain good loading 
effects and achieve high NO conversion in the 
low-temperature window of 100–180 ºC. In this study, a 
series of cerium-manganese oxides were supported on 
modified glass-fiber by impregnation method, and the 
activity of these catalysts were tested. The results showed 
that the most active catalyst yielded 87.4% NO conver-
sion at 150 ºC under GHSV=50000 h–1. 

1  Experimental 

1.1  Catalysts preparation 

The Ce-Mn/GF catalysts were prepared by impregna-
tion method using cerium nitrate, manganese nitrate and 
alkali-free glass-fiber. After HCl pretreatment, glass-fiber 
generated some rough non-micropores, which was suit-
able for catalyst carrier[16].  

The modification step of glass-fiber is as follows: Seven 
samples of 1.2 g glass-fiber were firstly marinated in 
soapy water for 20 min, then washed, dried and weighted. 
These samples were pretreated by 2 mol/L hydrochloric 
acid for 30 min at 50 ºC to get a weight loss of 7.5%.  

The aqueous solution of manganese nitrate (Mn(NO3)2, 
0.02 mol) and cerium nitrate (Ce(NO3)3, 0–0.01 mol) was 
mixed in 100 mL deionized water under stirring at room 
temperature. Then modified glass-fibers were impregnated 
with the prepared solution for room temperature for 24 h 
and 50 ºC for 24 h to reach adequate loading purpose. Fi-
nally, the samples were pyrolyzed at 200 ºC for 4 h in air. 
The catalyst was denoted as Ce-Mn/GF(x), where x repre-
sents the molar ratio of Ce to Mn, e.g. Ce-Mn/GF(0–0.2). 

1.2  Characterization of catalysts 

Surface area and pore size distribution for the catalysts 
were measured by Brunauer-Emmett-Teller (BET) method. 
Barrett-Joyner-Halenda (BJH) method was used to ana-
lyze the successive pore size distribution (PSD) curves of 
macropores. The surface atomic state of the catalysts was 
determined by X-ray photoelectron spectroscopy (XPS) 
using a Thermo escalab 250Xi spectrometer equipped 
with a monochromated Al Kα radiation (1486.6 eV) 
(Thermo Electron, USA). Crystal structure of the cata-
lysts were characterized by X-ray diffractometry using 
Rigaku D/max-2550 PC with a diffractometer operated at 
40 kV and 200 mA (Japan, Cu K α radiation, 0.154056 
nm), and the scans were taken over a range of 5° to 60° 
at a speed of 5 (°)/min. A scanning electron microscope 
(SEM) Quanta-250 was used to observe the supporting 
imaging of the catalysts. 

1.3  Activity test 

Catalyst activity measurements were carried out in a 

quartz tube reactor of diameter 20 mm. In typical condi-
tions, 1 g sample was used in each run. The feed gases 
consisting of 500 ppm NO, 550 ppm NH3, 5 vol.% O2, 
and 550 ppm SO2 (when used) in N2 were adjusted by a 
rotameter and introduced into the reactor with a total 
flow rate of 1000 mL/min, yielding a gas hourly space 
velocity(GHSV) of 50000 h–1. The feed gases except 
NH3 were mixed in a mixing tank before entering the re-
actor, and NH3 was directly into the quartz tube reactor 
to avoid possible reaction with SO2 (when used). All 
catalyst activity tests were performed at the temperature 
of 80–180 ºC with a heating rate of 5 ºC/min. In order to 
avoid the impact of gas adsorption on the catalyst sam-
ples, the test data were recorded after the reactions had 
been kept in stable states for each reaction temperature. 
NO conversion was obtained by the following equation: 
[Conv.]NO={([NO]outlet–[NO]inlet)/[NO]inlet}×100%   (1) 

2  Results and discussion 

2.1  Activity test 

Fig. 1 shows the NO conversion at various tempera-
tures for the SCR of NO by NH3 over Ce-Mn/GF cata-
lysts with different Ce/Mn molar ratios. Mn/GF catalyst 
without Ce showed relatively low activity and 78% NO 
conversion was obtained at 160 ºC. It should be noted 
that the addition of Ce caused a significant enhancement 
of the catalytic activity. With the Ce/Mn molar ratios in-
creasing from 0 to 0.33, the NO conversion was en-
hanced in the low temperature range (100–150 ºC), and 
the maximum NO conversion shifted towards lower tem-
perature. For Ce-Mn/GF(0.2), over 87% NO conversion 
was obtained at a low temperature of 150 ºC. However, 
further increase of the molar Ce/Mn ratios from 0.2 to 
0.5 lowered the NO conversion. This phenomenon ap-
parently occurred in Ce-Mn/GF(0.5), which declined 
the NO conversion both at low and high temperatures 
compared with pure Mn/GF without Ce. It can be  

 
Fig. 1 NO Conversion of Ce-Mn/GF(x) with different Ce/Mn 

molar ratios (Reaction conditions: 500 ppm NO, 550 
ppm NH3, 5% O2, and balance N2, GHSV=50000 h–1) 
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