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Complexity of some special named graphs with double edges
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Abstract

In mathematics, one always tries to get new structures from given ones. This also applies to the realm of graphs, where one can
generate many new graphs from a given set of graphs. In this paper we derive simple formulas of the complexity, number of spanning
trees, of Some Special named Graphs with double edges such as Fan, Wheel and Mobius ladder, using linear algebra, Chebyshev
polynomials and matrix analysis techniques.
© 2013 Taibah University. Production and hosting by Elsevier B.V. All rights reserved.
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1.  Introduction

In this introduction we give some basic definitions and lemmas. We deal with simple and finite undirected graphs
G =  (V,  E), where V  is the vertex set and E  is the edge set. For a graph G, a spanning tree in G  is a tree which has the
same vertex set as G. The number of spanning trees in G, also called, the complexity of the graph, denoted by τ(G),
is a well-studied quantity (for long time) and appear in a number of applications. Most notable application fields are
network reliability [1–3], enumerating certain chemical isomers [4] and counting the number of Eulerian circuits in a
graph [5]. A classical result of Kirchhoff [6] can be used to determine the number of spanning trees for G  =  (V,  E).
Let V  =  {v1,  v2, .  .  ., vn}, then the Kirchhoff matrix H  defined as n  ×  n  characteristic matrix H  =  D  −  A, where D  is
the diagonal matrix of the degrees of G  and A  is the adjacency matrix of G, H  =  [aij] defined as follows: (i) aij =  −1
vi and vj are adjacent and i /=  j, (ii) aij equals the degree of vertex vi if i =  j, and (iii) aij =  0 otherwise. All of
co-factors of H  are equal to τ(G). There are other methods for calculating τ(G). Let μ1≥μ1≥.......≥μp denote the
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eigenvalues of H  matrix of a p  point graph. Then it is easily shown that μp =  0. Furthermore, Kelmans and Chelnokov

[7] shown that, τ(G) =  (1/p)
∏p−1

k=1 μk. The formula for the number of spanning trees in a d-regular graph G  can be

expressed as τ(G) =  (1/p)
∏p−1

k=1 (d  −  μk) where λ0 =  d,  λ1, λ2,  . .  ., λp−1 are the eigenvalues of the corresponding
adjacency matrix of the graph. However, for a few special families of graphs there exists simple formulas that make
it much easier to calculate and determine the number of corresponding spanning trees especially when these numbers
are very large. One of the first such results is due to Cayley [8] who showed that complete graph on n vertices, Kn

has nn−2 spanning trees that he showed τ(Kn) =  nn−2,  n≥2. Another result, τ(Kp,q) =  pq−1qp−1,  p,  q≥1, where
Kp,q is the complete bipartite graph with bipartite sets containing p  and q  vertices, respectively. It is well known,
as in e.g., [9,10]. Another result is due to Sedlacek [11] who derived a formula for the wheel on n  +  1 vertices,
Wn+1, which is formed from a cycle Cn on n  vertices by adding a vertex adjacent to every vertex of Cn. In particular,
he showed that τ(Wn+1) =  (3 + √

5/2)
n +  (3 − √

5/2)
n −  2, for n≥3. Sedlacek [12] also derived a formula for the

number of spanning trees in a Mobius ladder. The Mobius ladder Mn is formed from cycle C2n on 2n  vertices labeled
v1, v2,  .  . ., v2n by adding edge vivi+n for every vertex vi where i  ≤  n. The number of spanning trees in Mn is given
by τ(Mn) =  (n/2)[(2 + √

3)
n +  (2 − √

3)
n +  2] for n≥2. Another class of graphs for which an explicit formula has

been derived is based on a prism. Boesch et al. [13,14]. Let the vertices of two disjoint and length cycles be labeled
v1, v2,  .  . ., vn in one cycle and w1,  w2,  . .  ., wn in the other. The prism Rn is defined as the graph obtained by adding
to these two cycles all edges of the form viwi. The number of spanning trees in Rn is given by the following formula
(n/2)[(2 + √

3)
n +  (2 − √

3)
n −  2].

Later, Daoud [15–28] derived formulas for the number of spanning trees in Cocktail Party, Crown and Trapezoidal
graphs.

2.  Chebyshev  polynomials

In this section we introduce some lemmas on determinants and some relations concerning Chebyshev polynomials
of the first and second kind which we use it in our computations. We begin from their definitions, Yuanping et al. [29].

Let An(x) be n  ×  n  matrix such that:

An(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2x  −1 0 · · · 0

−1 2x  −1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 2x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where all other elements are zeros.
Further we recall that the Chebyshev polynomials of the first kind are defined by:

Tn(x) =  cos(n  arccos x) (1)

The Chebyshev polynomials of the second kind are defined by

Un−1(x) = 1

n

d

dx
Tn(x) = sin(n  arccos x)

sin(arccos x)
(2)

It is easily verified that

Un(x) −  2xUn−1(x) +  Un−2(x) =  0 (3)

It can then be shown from this recursion that by expanding det An(x) one gets

Un(x) =  det(An(x)),  n≥1 (4)
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