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Abstract In this paper, we present a reliable algorithm based on the new homotopy perturbation

transform method (HPTM) to solve a time-fractional Navier–Stokes equation in a tube. The frac-

tional derivative is considered in the Caputo sense. By using an initial value, the explicit solution of

the equation has been presented in a closed form and then its numerical solution has been repre-

sented graphically. The new homotopy perturbation transform method is a combined form of

the Laplace transform method and the homotopy perturbation method. The results obtained by

the proposed technique indicate that the approach is easy to implement and computationally very

attractive.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Fractional calculus is a field of applied mathematics that deals
with derivatives and integrals of arbitrary orders. Fractional

differential equations have gained importance and popularity,
mainly due to their demonstrated applications in science and
engineering. For example, these equations are increasingly
used to model problems in fluid flow, rheology, diffusion,

relaxation, oscillation, anomalous diffusion, reaction–diffu-
sion, turbulence, diffusive transport akin to diffusion, electric

networks, polymer physics, chemical physics, electrochemistry
of corrosion, relaxation processes in complex systems, propa-
gation of seismic waves, dynamical processes in self-similar
and porous structures and many other physical processes.

The most important advantage of using fractional differential
equations in these and other applications is their non-local
property. It is well known that the integer order differential

operator is a local operator but the fractional order differential
operator is non-local. This means that the next state of a sys-
tem depends not only upon its current state but also upon all

of its historical states. This is more realistic and it is one reason
why fractional calculus has become more and more popular
(Caputo, 1969; Debnath, 2003; He, 1998, 1999a; Hilfer,
2000; Kilbas et al. 2006; Mainardi et al., 2001; Miller and

Ross, 1993; Oldham and Spanier, 1974; Podlubny, 1999;
Young, 1995).
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Recently, El-Shahed and Salem (2005) have generalized the
classical Navier–Stokes equations by replacing the first time
derivative by a fractional derivative of order a, 0 < a 6 1.

The Laplace, Fourier sine and finite Hankel transforms have
been employed to obtain the exact solution for the time-frac-
tional Navier–Stokes equations.

The Navier–Stokes equation is the primary equation of
computational fluid dynamics, relating pressure and external
forces acting on a fluid to the response of the fluid flow. The

Navier–Stokes and continuity equations are given by:

@u

@t
þ ðu:rÞu ¼ � 1

q
rpþ mr2u; ð1Þ

r:u ¼ 0; ð2Þ

where q is the density, p is the pressure, m is the kinematics vis-
cosity, u is the velocity and t is the time. This model can be

generalized by replacing the first-time derivative by a fractional
derivative of order a, 0 < a 6 1. The time-fractional model for
Navier–Stokes equation then has the form of the operator
equation

Da
�tuþ ðu:rÞu ¼ �

1

q
rpþ mr2u; ð3Þ

where Da
�t denotes the Caputo fractional derivative of order a.

The time-fractional Navier–Stokes equations have been stud-
ied by Ganji et al. (2010); Momani and Odibat (2006) by using
the Adomian decomposition method (ADM) and the homoto-

py perturbation method (HPM) respectively. The homotopy
perturbation method (HPM) was first introduced by He
(1999b). The homotopy perturbation method has also been

used by many researchers to handle linear and nonlinear prob-
lems arising in science and engineering (Ganji, 2006; He, 2003,
2006; Kumar and Singh, 2010; Kumar, 2013; Kumar et al.,

2012a; Vanani et al., 2013). The homotopy analysis method
was applied to study boundary layer flow in the region of
the stagnation point towards a stretching sheet (Nadeem
et al., 2010a) and stagnation flow of a Jeffrey fluid over a

shrinking sheet (Nadeem et al., 2010b). In recent years, many
authors have paid attention to study the solutions of linear and
nonlinear partial differential equations by using various meth-

ods combined with the Laplace transform. Among these are
the Laplace decomposition method (Gondal et al., 2013a;
Khuri, 2001; Khan and Hussain, 2011; Khan and Gondal,

2012a,b; Khan et al., 2012a, 2012d, 2013; Khan, 2013), homot-
opy perturbation transform method (Kumar et al., 2012b,
2012c; Singh et al. 2012a, 2012b, 2013; Khan et al., 2011,

2012b, 2012e; Gondal and Khan, 2010) and homotopy analysis
transform method (Arife et al., 2012; Gondal et al., 2013b;
Khan et al. 2012c; Kumar et al. 2013a, 2013b; Khader et al.,
2013; Salah et al., 2013).

In the present article, we consider the unsteady flow of a vis-
cous fluid in a tube in which, besides time as one of the depen-
dent variables, the velocity field is a function of only one space

coordinate. Next, we apply the new homotopy perturbation
transform method (HPTM) to solve the time-fractional Na-
vier–Stokes equation. The homotopy perturbation transform

method (HPTM) is a combination of the Laplace transform
method and the homotopy perturbation method (HPM). The
objective of this paper is to extend the application of the HPTM
to obtain a solution of the time-fractional Navier–Stokes

equation. The advantage of this technique is its capability of

combining two powerful methods for obtaining exact and
approximate analytical solutions for nonlinear equations. It is
worth mentioning that the proposed method is capable of

reducing the volume of the computational work as compared
to the classical methods while still maintaining the high accu-
racy of the numerical result; the size reduction amounts to an

improvement of the performance of the approach.

2. Basic definitions of fractional calculus

In this section, we mention the following basic definitions of
fractional calculus.

Definition 1. The Riemann–Liouville fractional integral oper-
ator of order a > 0, of a function fðtÞ 2 Cl; l P �1 is defined

as (Podlubny, 1999):

JafðtÞ ¼ 1

CðaÞ

Z t

0

ðt� sÞa�1fðsÞds; ða > 0Þ; ð4Þ

J0fðtÞ ¼ fðtÞ: ð5Þ

For the Riemann–Liouville fractional integral we have:

Jatc ¼ Cðcþ 1Þ
Cðcþ aþ 1Þ t

aþc: ð6Þ

Definition 2. The fractional derivative of fðtÞ in the Caputo
sense is defined as (Caputo, 1969):

Da
�tfðtÞ ¼ Jn�aDnfðtÞ ¼ 1

Cðn� aÞ

Z t

0

ðt� sÞn�a�1
fðnÞðsÞds; ð7Þ

for n� 1 < a 6 n; n 2 N; t > 0:

Definition 3. The Laplace transform of the Caputo derivative
is given by Caputo (Caputo, 1969); see also Kilbas et al. (2006)

in the form

L½Da
�tfðtÞ� ¼ saL½fðtÞ� �

Xn�1
r¼0

sa�r�1 fðrÞð0þÞ ðn� 1 < a 6 nÞ :

ð8Þ

3. Analysis of the new proposed method

Consider unsteady, one-dimensional motion of a viscous fluid

in a tube. The equations of motions which govern the flow field
in the tube are the Navier–Stokes equations in cylindrical coor-
dinates and they are given by.

@u

@t
¼ � @p

q@z
þ m

@2u

@r2
þ 1

r

@u

@r

� �
; ð9Þ

subject to the initial condition

uðr; 0Þ ¼ fðrÞ: ð10Þ

If the fractional derivative model is used to present the time
derivative term, the Eq. (9) assumes the form

@au

@ta
¼ P þ m

@2u

@r2
þ 1

r

@u

@r

� �
0 < a 6 1; ð11Þ
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