EL SEVIER

Contents lists available at ScienceDirect

Marine Chemistry

journal homepage: www.elsevier.com/locate/marchem

Lead-210 and Polonium-210 disequilibria in the northern Gulf of Mexico hypoxic zone

Patrick Jones ^a, Kanchan Maiti ^{a,*}, J. McManus ^{b,c}

- a Louisiana State University, Department of Oceanography and Coastal Science, Energy, Coast & Environment Building, Baton Rouge, LA 70803, USA
- b Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Administration Building, Corvallis, OR 97331, USA
- ^c University of Akron, Department of Geosciences, Akron, OH 44325-4104, USA

ARTICLE INFO

Article history:
Received 8 July 2014
Received in revised form 5 November 2014
Accepted 23 December 2014
Available online 31 December 2014

Keywords: Polonium-210 Hypoxia Gulf of Mexico

ABSTRACT

We report water column dissolved and particulate ²¹⁰Pb and ²¹⁰Po profiles along with ancillary data from the northern Gulf of Mexico continental shelf collected during the summers of 2011 and 2012. The dissolved 210 Po/ 210 Pb ratio in bottom water was > 1 at 10 out of 12 stations whereas the 210 Po/ 210 Pb activity ratio in surface water was approximately 0.2–1.3. This lower dissolved ²¹⁰Po/²¹⁰Pb surface ratio indicates that ²¹⁰Po is generally more efficiently scavenged than ²¹⁰Pb in surface layers. The particulate ²¹⁰Po/²¹⁰Pb ratio was 1.6–5.1 in surface water and 2.5–10.4 in bottom water indicating that ²¹⁰Po tends to be more enriched in deep water particulate material as compared to surface material. The 210 Po and POC are significantly correlated ($r^2 = 0.93$) with the $POC/^{210}Po$ ratio varying between 205 and 2094 μ mol C dpm $^{-1}$. These general patterns suggest that ^{210}Po is scavenged from the surface waters and regenerated or added to bottom waters relative to ²¹⁰Pb. The addition of Po to bottom water (either in the dissolved or particulate phase) likely requires a sedimentary source of Po, relative to Pb, to the overlying water column. Dissolved oxygen concentrations and water column stratification vary throughout the region, and we find no correlation between dissolved O₂ concentration and ²¹⁰Po excess. ²¹⁰Po enrichment does, however, appear to be coupled to the release of the redox sensitive trace metals Fe and Mn and remineralization of silica in bottom waters to some extent. We suggest that the cycling of these redox sensitive metals, coupled with the degradation of organic matter is the likely driving mechanism for ²¹⁰Po remobilization that produces the observed water column ²¹⁰Po distributions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

 ^{210}Po (t $_{1/2}=138.376$ d) is produced from the decay of ^{210}Pb (t $_{1/2}=22.2$ yr) via decay of ^{210}Bi (t $_{1/2}=5.012$ d) and is the final radioactive product in the naturally occurring ^{238}U decay chain that decays to stable ^{206}Pb . The primary source of ^{210}Pb in the natural environment is the exhalation of ^{222}Rn (t $_{1/2}=3.8$ d) from the continents into the atmosphere. Although ^{210}Po is produced from ^{210}Pb decay within the atmosphere, this activity represents a relatively small fraction (10–20%) of the ^{210}Pb activity because of the short atmospheric residence time of ^{210}Pb -containing aerosols (Kim et al., 2005a; Harada et al., 1989). Within a water body or its underlying sediments, the ^{210}Pb production can also occur from the in situ decay of ^{226}Ra to ^{210}Pb and subsequently to ^{210}Po (Kim et al., 2005b).

²¹⁰Pb and ²¹⁰Po are both particle reactive but have differing particle affinities and binding mechanisms. ²¹⁰Pb becomes quickly adsorbed to sedimentary particle surfaces, whereas ²¹⁰Po can be incorporated via biological activity into the cytoplasm and cell wall of some species of phytoplankton, more like a nutritional element (Fisher et al., 1983).

* Corresponding author.

E-mail address: kmaiti@lsu.edu (K. Maiti).

This partitioning of ²¹⁰Po into biological material is similar to that of sulfur and protein within the cell (Fisher et al., 1983; Stewart and Fisher, 2003a,b). In the water column, the biogeochemical differences between ²¹⁰Pb and ²¹⁰Po result in ²¹⁰Po being more efficiently removed from surface waters in marine and lacustrine environments compared to ²¹⁰Pb, which is removed via particle scavenging. ²¹⁰Po's higher affinity for biogenic particles generally results in an upper water column ²¹⁰Po deficit relative to ²¹⁰Pb because of biogenic material export (sinking). Thus, studying the deficit of ²¹⁰Po in the surface ocean can provide valuable insight into particle dynamics and organic carbon export in the open ocean (Stewart et al., 2007; Kim et al., 2005b).

In addition to the above evidence for a biological influence on ²¹⁰Po geochemistry, more targeted studies have noted the chemical similarities between sulfur and ²¹⁰Po (Harada et al., 1989; Balisterieri et al., 1995; Swarzenski et al., 1999). Polonium is considered a class B, sulfur-seeking metal, and is associated with proteins and sulfur-containing compounds (Stewart et al., 2007). Higher trophic level organisms such as marine copepods indicate a relatively high assimilation efficiency of ²¹⁰Po by consumption of zooplankton (Stewart and Fisher, 2003b). The high assimilation efficiency coupled with a slow Po loss rate makes zooplankton an effective conduit for the transfer of ²¹⁰Po to higher trophic levels and bioaccumulation of the radioisotope in the

marine food web and may lead to elevated doses to human. This enrichment among higher trophic levels in the marine environment is primarily derived from the direct consumption of foods rather than from the intake of seawater (Kim et al., 2005b). In fact, ²¹⁰Po has been found to concentrate in the hepatopancreas of several marine invertebrates, and several studies have shown ²¹⁰Po to be specifically associated with protein in this organ (Fisher et al., 1983). Uptake of this radioisotope by marine organisms has been well documented in coastal environments in varying locations around the world (Carvalho, 2011; Bustamante et al., 2002). In fact, estimates demonstrate that approximately 4 kg of scallop flesh intake would be sufficient to reach the annual permissible intake of 1 mSv of ²¹⁰Po for humans (Bustamante et al., 2002).

Multiple studies have shown that ²¹⁰Po can be mobilized from hypoxic sediments in low oxygen lacustrine environments, but to our knowledge no data for ²¹⁰Po mobilization in the coastal marine environments exists (Benoit and Hemond, 1990; Kim et al., 2005b; Talbot and Andren, 1984), Talbot and Andren (1984) conducted a study on seasonal variations of ²¹⁰Po in an oligotrophic lake in Wisconsin, USA. The study revealed a depletion of ²¹⁰Po in the surface waters relative to bottom water suggesting a diagenetic mobilization of Po, consistent with other work in seasonally anoxic lakes or ponds (Benoit and Hemond, 1990; Kim et al., 2005b). Low oxygen conditions have also been shown to remobilize other radionuclide pairs from the ²³⁸U decay series, such as ²²⁶Ra/²¹⁰Pb (Balisterieri et al., 1995). These authors showed that diffusion of ²¹⁰Po from bottom sediments was occurring but they were unable to identify the exact mechanism of ²¹⁰Po release from the sediments. Sulfate-reducing bacteria have also been found to effective release polonium in culture experiments provided the sulfide levels did not rise above 10 µM (LaRock et al., 1996; Cherrier et al., 1995). Removal of ²¹⁰Po and ²¹⁰Pb from sediment could also impact ²¹⁰Pb-based sediment rate calculations, especially when utilizing the alpha spectrometry method, which assumes ²¹⁰Po and ²¹⁰Pb to be in equilibrium. The major objective of this work is to utilize ²¹⁰Po–²¹⁰Pb disequilibria to determine whether the northern Gulf of Mexico sediments are a source of ²¹⁰Po to the overlying hypoxic water column.

2. Study area

The Gulf of Mexico 'Dead Zone' is adjacent to the Mississippi River and spans the continental shelf from Texas to Mississippi with its average size, over the years 2006–2010, being about 17,000 km² (www. gulfhypoxia.net). Hypoxia in the Gulf of Mexico is generally defined as a dissolved oxygen concentration of $< 2 \text{ mg L}^{-1}$. The northern Gulf of Mexico is an important spawning ground for juvenile marine fishes and other organisms representing the United States' most economically viable oyster harvesting area (http://www.epa.gov/gmpo/about/facts. html). The areal extent of the northern Gulf of Mexico Dead Zone, coupled with the potential importance of hypoxia on Po geochemistry make this area an ideal site to study the ²¹⁰Po and ²¹⁰Pb dynamics. However, as a nuance to the current study, we note that the waters that blanket the shallow shelf region likely undergo rapid spatial and temporal chemical change, relative to the timescales of biogeochemical processes that occur in marine sediments. This dynamic feature of the northern Gulf of Mexico likely imparts significant non-steady state chemical conditions or signatures within these waters.

3. Methodology

3.1. Sample stations

Water column samples were collected from various stations on the continental shelf from two oceanographic research cruises during August 2011 and July/August 2012 (Fig. 1). Six water column profiles were collected per year for both years, for a total of 12 profiles. The intensity and distribution of the hypoxic zone varies both annually

and seasonally, and the sampling cruises were planned to collect samples during the peak hypoxic period (Turner et al., 2002). The number of samples per station was dependent on the depth of the water column. Water samples were collected approximately every 5–7 m in the water column, with a sample taken within a meter of the water–sediment interface.

3.2. Sample collection

Dissolved water column samples were collected via ship rosette system and consisted of 8–10 L of seawater. The water samples were pressure filtered from the Nisken bottles directly into acid-cleaned polycarbonate containers, using a 0.45 µm nuclepore filter to separate any particulate matter. The samples were then acidified with concentrated HCl to pH 1-2 and spiked with known amounts of ²⁰⁹Po and stable Pb²⁺ yield monitors to quantify any subsequent losses of Po and Pb. A Fe³⁺ co-precipitate (30 mg of Fe⁺³/mL) was also added to each sample and after an equilibration period of 6–8 h, the pH was brought back up to approximately pH 8-8.5, using concentrated NH₄OH. Samples were allowed to precipitate and settle for 8-10 h. The precipitate was transferred to 1 L polypropylene bottles. One liter bottles were stored on board for processing upon arrival to shore. Further radiochemical purifications and measurements were conducted back in the laboratory at Louisiana State University to determine the final ²¹⁰Po and ²¹⁰Pb activities. The ²¹⁰Po analytical methods used to determine ²¹⁰Po activity in the water column are similar to those described in Nozaki (1986) and Masque et al. (2002).

Particle samples were collected only in 2011 using battery-operated submersible pumps (McLane Research Laboratories, Inc., Falmouth, USA). The pump deployment consisted of a vertical array of three pumps at various depths. Large-volume water samples (~70–150 L) were filtered at a flow rate of 4–6 L min⁻¹ through acid washed 150 mm pre-filters (51 μm polycarbonate screen) and then onto acid washed pre-combusted (at 450 °C for 8 h) 1 μm nominal, 150 mm diameter Quartz Microfiber Filter (QMA) (Whatman, Kent, U.K.) to capture suspended particles. After the recovery of pumps, the filters were taken out and three 22 mm diameter subsamples were collected for particulate ²¹⁰Po/²¹⁰Pb analysis and particulate organic carbon (POC) analysis. The particles captured on the screens were immediately transferred to 47 mm QMA filters and a subsample from this filter was utilized for ²¹⁰Po/²¹⁰Pb and POC analysis. The subsamples for POC analysis were dried onboard at 60 °C.

Iron, manganese, and major nutrient samples were collected during the 2011 cruise directly from the rosette system with an HCl-cleaned plastic syringe and either not filtered (for total dissolvable metal analysis) or filtered through AcroPak 200 capsule filters with 0.8/0.2 μm Supor membrane for the dissolved analyses. Filters were rinsed with sample prior to collection. Iron and manganese samples were acidified to a pH of approximately 2 using trace element clean (11 N) HCl and nutrient samples were not acidified. Dissolved oxygen concentrations were recorded with an O_2 sensor as part of the ships CTD system.

3.3. Analytical methods

3.3.1. ²¹⁰Po and ²¹⁰Pb analysis

Polonium was auto-deposited directly onto silver planchets following methods described by Flynn (1968) and Fleer and Bacon (1984). After the initial plating of polonium onto the silver planchets was complete, the plating solutions were immediately cleaned of all residual Polonium remaining using an AGX-I resin column, re-spiked with ²⁰⁹Po yield tracer and stored for 9–10 months, allowing ²¹⁰Po to be regenerated from the decay of ²¹⁰Pb. This freshly produced ²¹⁰Po represented the concentration of ²¹⁰Pb in the original sample. The silver planchets were then counted on Canberra Alpha Analyst high-resolution silicon-surface barrier (PIPS) alpha detectors to determine ²¹⁰Po activities. A 1 mL aliquot was extracted from the final plating solution and

Download English Version:

https://daneshyari.com/en/article/1262781

Download Persian Version:

https://daneshyari.com/article/1262781

<u>Daneshyari.com</u>