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Abstract

The stochastic radiation transfer problem is studied in a finite participating planar continuously random medium. The problem is
considered for specular-reflecting boundaries with Rayleigh scattering. The importance Rayleigh scattering arises in the atmospheric
applications in the form of radiative transfer through clouds or in neutron transport with a quadratic formula of scattering. Such
cluttered media should be analyzed in a statistical sense. As a result, the random variable transformation (RVT) technique is used to
obtain the average of the solution functions that are represented by the probability-density function (PDF) of the solution process.
The transport equation is solved deterministically to obtain a closed form of the solution as a function of optical depth x  and
optical thickness L. The solution is used to obtain the PDF of the solution functions by applying the RVT technique among the
input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used
to obtain the complete analytical averages for some interesting physical quantities, namely, reflectivity and transmissivity, at the
medium boundaries. The numerical results are calculated and represented graphically for different probability distribution functions.
© 2015 The Author. Production and hosting by Elsevier B.V. on behalf of Taibah University. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1.  Introduction

Obviously, a real medium requires statistical investi-
gations to emphasize its inhomogeneities. For example,
modern atmospheric models do not include the macro-
scopic geometry of atmospheric media. The most
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common approximation of partial randomness involves
the fluctuations of the medium properties, which is a
convenient way of describing its optical and radiative-
transfer properties. Stochastic theory is an important
approach, with radiative transfer in a stochastic media
being a highly active research field in recent years [1–4].

The solution of a stochastic radiative transfer prob-
lem can be obtained when the probability distribution
function (PDF) of the solution can be evaluated. This
evaluation can be achieved by many methods and
techniques, for example, the transformation technique
[5], Wiener-Hermite expansion [6], stochastic lin-
earization [7], and stochastic finite element method
[8]. In the transformation technique [9], the PDF of
the solution process is computed whenever the solution
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function can be represented in a closed form in the input
variables. In this case, it can be said that we have a
one-to-one mapping between the solution output and the
random inputs, with a condition that the corresponding
Jacobian of transformation can be evaluated. The use
of this technique is, however, limited according to the
conditions that should be satisfied for the existence of
the random variable transformation (RVT) [10]. Very
recently, the stochastic neutron transport in a fluctuating
reactor was studied [4], where the solution inverse (and
hence the Jacobian) was estimated easily for the case of
semi-infinite media. Due to the difficulties involved in
obtaining one-to-one mapping in the case of a finite pla-
nar media, we attempted to overcome these difficulties
to obtain the PDF of the solution functions in this work.

Generally, stochastic principles are investigated by
using different techniques for different cases. For exam-
ple, Markovian statistics [2] are used for solving discrete
randomly radiative transfer problems; we solved many
related problems (e.g., [11]). For the theory of fluctua-
tions (continuous randomness), Gaussian statistics have
been used in many previous papers [12,13] to obtain the
average solution. What can be used for other probabil-
ity distributions? To answer this question, in this work,
we applied the RVT technique to obtain the average
solution for any probability distribution, either for a half-
space medium [4] or a finite slab plane-parallel medium
(present work).

In this paper, the stochastic radiative transfer prob-
lem is analyzed for a participating finite planar cluttered
medium. The problem is considered for specular-
reflecting boundaries with Rayleigh scattering. The
medium is assumed to be continuously stochastic, that
is, the extinction function is a continuous random func-
tion of position. Consequently, the optical variable x  and
optical thickness L  of the medium are continuously ran-
dom variables. To obtain the average solution over the
medium fluctuations, a solution algorithm used that is
mainly s based on using the RVT technique [4,9]. Fol-
lowing this treatment, the PDF of the solution process is
obtained, and then, one can calculate any statistical quan-
tity related to the solution. In the context of a finite planar
media, the obtained deterministic solution is a combina-
tion of two independent exponential functions. Hence,
determining the inverse of the solution is an impossible
task. For the case of a non-atomic mix, each exponential
solution function can be treated separately to obtain the
corresponding PDF (via RVT), and then, the average is
readily obtained. Therefore, the combination of the two
average solution functions results in the total analytical
average expression for the reflectivity and transmissiv-
ity. The algorithm of the RVT technique is applied to

obtain the average solutions for different types of PDF
(exponential, normal Gaussian, gamma). The numeri-
cal results of the average reflectivity and transmissivity
at the medium boundaries are obtained and displayed
graphically.

2.  Basic  equations

The radiative transfer through a finite planar partic-
ipating medium with anisotropic scattering [2] can be
described by(

μ
∂

∂x
+  1

)
I(x, μ) = ω

2

∫ 1

−1
P(μ,  μ′)I(x,  μ′)dμ′,

0 ≤  x  ≤  L,  −  1 ≤  μ ≤  +1 (1)

where I (x, μ) is the radiation intensity, with the optical
space variable x and angular variable μ  (the direction
cosine of the transferred radiation), and ω  is the single
scattering albedo of the medium.

The problem modelled by Eq. (1) is subjected to the
specular reflective boundaries in the form

I(0,  μ) =  F  +  ρs
1I(0,  −μ)

I(L,  −μ) =  ρs
2I(L,  μ)

,  μ  ≥  0 (2)

where F is the external incident flux on the upper bound-
ary (x  = 0) and ρs

i (i  = 1, 2) are the specular reflectivities
of the boundaries. For Rayleigh scattering, the function
P
(
μ, μ′) takes the form [14]

P(μ,  μ′) = 3

8

[
(3 −  μ2) +  (3μ3 −  1)μ′2

]
(3)

Deterministically, the Pomraning-Eddington approx-
imation is used to solve the problem. This method
expresses the angular intensity I(x, μ) in the form [15,16]

I(x,  μ) =  E(x)ε(x,  μ) +  F (x)O(x,  μ) (4)

where E(x) is the radiant energy and F(x) is the radiative
net flux, which are defined by

E(x) =
∫ 1

−1
I(x,  μ)dμ  and F (x) =

∫ 1

−1
μI(x,  μ)dμ

(5)

and ε(x, μ) and O(x, μ) are even and odd functions,
respectively, in μ and slowly vary in x. Therefore, the
solution is obtained in the analytical form as

I(x,  μ) =  α0

∞∑
n=0

αn
1

{
I3Γ−(μ)e−ν(x+2nL)

−I4Γ+(μ)eν(x−2(n+1)L)
}

(6)
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