Elliptic curves over a chain ring of characteristic 3 致

Moulay Hachem Hassib ${ }^{\text {a,* }}$, Abdelhakim Chillali ${ }^{\text {b }}$, Mohamed Abdou Elomary ${ }^{\text {a }}$
${ }^{\text {a }}$ Moulay Ismail University, FSTE, Errachidia, Morocco
${ }^{\text {b }}$ USMBA, LSI, FPT, Taza, Morocco

Available online 2 March 2015

Abstract

This paper proposes the generalization of our previous work to the ring $A_{n}=\mathbb{F}_{3^{d}}[X] /\left(X^{n}\right)$. All results found before in A_{2}, A_{3} and $A_{4}[1-3]$ hold in A_{n}; but the approach here is clearly different, and has given more interesting results, specially when 3 does not divide $\# E_{a_{0}, b_{0}}^{1}$; the elliptic curve over the ring A_{n} is a direct sum of the elliptic curve over the field $\mathbb{F}_{3^{d}}$ and, unexpectedly its own subgroup of elements with the third projective coordinate not invertible, instead of $\mathbb{F}_{3^{d}}{ }^{n}$ as it was thought in the earlier works. Other results are deduced from, we cite the equivalence of the Discrete Logarithm Problem (DLP) on the elliptic curve over the ring A_{n} and the field $\mathbb{F}_{3^{d}}$, which is beneficial for cryptanalysts and cryptographers as well, and we will set the theoretic foundations to build a cryptosystem similar to the one in [4] with more benefits, which will be specified later. © 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Taibah University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

MSC: 14H52; 94A60; 11T71
Keywords: Characteristic 3; Elliptic curves; Chain ring; Cryptography; Discrete Logarithm Problem; Short exact sequence

1. Introduction

Let d be a positive integer. We consider the quotient ring $A_{n}=\mathbb{F}_{3^{d}}[X] /\left(X^{n}\right)$, where $\mathbb{F}_{3^{d}}$ is the finite field of order 3^{d}, and $n \geq 1$. Then the ring A_{n} is identified to the ring $\mathbb{F}_{3^{d}}[\varepsilon], \varepsilon^{n}=0$. So we have:

$$
A_{n}=\left\{\sum_{i=0}^{n-1} x_{i} \varepsilon^{i} \mid\left(x_{i}\right)_{0 \leq i \leq n-1} \in \mathbb{F}_{3^{d}}\right\} .
$$

The study of the elliptic curve over the ring of dual numbers was started by Marie Virat in [4]. In her Ph.D. thesis, she has defined the elliptic curve over the ring $\mathbb{F}_{p}[X] /\left(X^{2}\right)$, where p is a prime number $\neq 2$ and 3 , and Chillali [5] has generalized the work of Virat and extended it to the ring $\mathbb{F}_{p}[X] /\left(X^{n}\right)$.

[^0]Peer review under responsibility of Taibah University.

[^1]The authors in their previous works have began the study of the elliptic curve over a chain ring of characteristic 3 , and established it for the rings A_{2}, A_{3} and $A_{4}[1-3]$.

Generalize our previous work to the ring A_{n}, is one of the purposes of this article. In Section 2, we will define the ring A_{n} and establish some useful results which are necessary for the rest of this article, and in Section 3 we will define the elliptic curve over A_{n} and explicitly the group law over $E_{a, b}^{n}$. Afterwards, we will classify the elements of the elliptic curve $E_{a, b}^{n}$ into two parts; where one of them is a subgroup of ($E_{a, b}^{n},+$) and is isomorphic to $\left(\mathfrak{M}_{n}, *\right.$); the maximal ideal of A_{n} provided with the law *, which is given in Definition 2. This subgroup is namely a direct factor of $E_{a, b}^{n}$ when 3 does not divide $N=\# E_{a, b}^{1}$, as it will be shown in Section 3.4.

Other purpose of this article is the application of the results in cryptography. Thereby, Theorem 4 provides the necessary foundations to create a cryptosystem similar to the one given in [4]. The new cryptosystem has the advantage of having a low cost of complexity compared to the first one, since we work in characteristic 3 and, furthermore, may be more secure by managing the choice of the appropriate parameter n; which refers to A_{n}.

Other cryptographic applications are given in Section 4.
The case 3 divides N is discussed in Section 3.6.
All theoretic results found in [4] hold in A_{2}; the ring of dual numbers of characteristic 3 and, further more are extended to A_{n}.

2. The ring A_{n}

In this section, we will give some results concerning the ring A_{n}, which are useful for the rest of this article.
Lemma 1. Let $X=\sum_{i=0}^{n-1} x_{i} \varepsilon^{i} \in A_{n}$.
X is invertible in A_{n} if and only if $x_{0} \neq 0$.
Lemma 2. A_{n} is a local ring, its maximal ideal is $\mathfrak{M}_{n}=(\varepsilon)$.
Lemma 3. A_{n} is a vector space over $\mathbb{F}_{3^{d}}$, and have $\left(1, \varepsilon, \ldots, \varepsilon^{n-1}\right)$ as basis.
Remark 1. We denote $I_{j}=\left(\varepsilon^{j}\right)$, where $j=1, \ldots, n-1$. Then, $\left(I_{j}\right)_{1 \leq j \leq n-1}$ is a decreasing sequence of ideals of A_{n} and $I_{1}=\mathfrak{M}_{n}$.

$$
\mathfrak{M}_{n}=I_{1} \supseteq I_{2} \cdots \supseteq I_{n-1}
$$

Lemma 4. $A_{n-1} \simeq A_{n} / I_{n-1}$
Proof. Let $A_{n-1}=\left\{\sum_{i=0}^{n-2} x_{i} \delta^{i} \mid\left(x_{i}\right)_{0 \leq i \leq n-2} \in \mathbb{F}_{3^{d}}\right.$ and $\left.\delta^{n-1}=0\right\}$ and h the map defined as follows:

$$
\begin{array}{ll}
A_{n-1} & \xrightarrow{h} \frac{A_{n}}{I_{n-1}} \\
\sum_{i=0}^{n-2} x_{i} \delta^{i} & \longmapsto
\end{array}
$$

Let prove that h is an isomorphism of rings.

- Let $X=\sum_{i=0}^{n-2} x_{i} \delta^{i} \in A_{n-1}$ and $Y=\sum_{i=0}^{n-2} y_{i} \delta^{i} \in A_{n-1}$, we have $X+Y=\sum_{i=0}^{n-2}\left(x_{i}+y_{i}\right) \delta^{i} \in A_{n-1}$ and $X Y=$ $\sum_{i=0}^{n-2} z_{i} \delta^{i} \in A_{n-1}$ where, $z_{j}=\sum_{i=0}^{j} x_{i} y_{j-i}$ (see Lemma 1.1 in [5, p. 1502]) then, $h(X+Y)=h(X)+h(Y)$ and, $h(X Y)=h(X) h(Y)$ and so, h is a homomorphism of rings.
- Let $X=\sum_{i=0}^{n-2} x_{i} \delta^{i} \in A_{n-1}$ such that $h(X)=0+I_{n-1}$. Then, $\sum_{i=0}^{n-2} x_{i} \varepsilon^{i}+I_{n-1}=0+I_{n-1}$, so $\sum_{i=0}^{n-2} x_{i} \varepsilon^{i} \in I_{n-1}$, this means that $x_{i}=0$ for all $i=0, \ldots, n-2$. So $X=0$, and $\operatorname{ker} h=0$, this prove that h is injective. Now let $Y=$ $\sum_{i=0}^{n-1} x_{i} \varepsilon^{i}+I_{n-1} \in A_{n} / I_{n-1}$, then we denote $X=\sum_{i=0}^{n-2} x_{i} \delta^{i}$; we have $X \in A_{n-1}$ and $h(X)=Y$, so h is surjective.

Finally h is an isomorphism of rings.

https://daneshyari.com/en/article/1263018

Download Persian Version:

https://daneshyari.com/article/1263018

Daneshyari.com

[^0]: is This work is related to the International Workshop of Algebra and Applications, June 18-21, 2014, FST Fez, Morocco.

 * Corresponding author. Tel.: +212 650886345.

 E-mail address: hachem71@gmail.com (M.H. Hassib).

[^1]: http://dx.doi.org/10.1016/j.jtusci.2015.02.001
 1658-3655 © 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Taibah University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

