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a b s t r a c t

Short-channel, high-mobility organic filed-effect transistors (OFETs) are developed based
on single crystals gated with short-channel air gaps. The high hole mobility of 10 cm2/Vs
for rubrene, and high electron mobility of 4 cm2/Vs for PDIF-CN2 crystals are demonstrated
even with a short channel length of 6 lm. Such performance is due to low contact resis-
tance in these devices estimated to be as low as �0.5 kX cm at gate voltage of �4 V for rub-
rene. With the benefit of the short channel length of 4.5 lm in a new device architecture
with less parasitic capacitance, the cutoff frequency of the rubrene air–gap device was esti-
mated to be as high as 25 MHz for drain voltage of �15 V, which is the fastest reported for
p-type OFETs, operating in ambient conditions.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the recent development of high-mobility organic
semiconductors and new processing techniques, organic
field-effect transistors (OFETs) may enable driver circuits
for such as flexible displays, flexible radio frequency identi-
fication (RF-ID) tags, and light-weight and wearable elec-
tronics [1–3]. However, present high-mobility (>10 cm2/
Vs) OFETs, based on either single-crystal or single-crystal-
like semiconductors, were demonstrated only for long-
channel lengths (L � 100 lm) devices [4–7], preventing
high-speed on–off switching. Since the maximum circuit
operating frequency is proportional to the transconductance
gm and inversely proportional to L2, it is essential to realize
OFETs having both a high-mobility semiconductor and a
short channel length. Thus for short-channel devices, it is
crucial to reduce the parasitic contact resistance (typically

from a few kX cm to MX cm) [8–10] to values comparable
to, or lower than, the channel resistance.

Studies addressing the contact resistance have been
carried out for OFETs based on polycrystalline films both
in top-contact (TC) and bottom-contact (BC) configurations
[8–16], and it was found that lower contact resistance is
typical for TC-FETs [8]. However, significant drawbacks
for TC-FETs are that the current has to travel through a
resistive path under the source and drain electrodes before
reaching the channel region [9] and semiconductor decom-
position under the contacts can occur during thermal/sput-
tering electrode deposition [16]. Moreover, sub-10 lm
channels are difficult to fabricate, unless using costly and
sophisticated orthogonal photolithography based on fluo-
rinated photoresists [17]. In contrast, conventional photol-
ithographic processes can be used for bottom-contact
device fabrication. However, a major concern for BC-FETs
having a polycrystalline semiconductor film relates to the
molecular disorder occurring in the vicinity of the metal
electrodes [8,11]. The scale of the disordered area typically
extends several micrometers, resulting in lower-mobility
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regions dominating the device performance. To overcome
this problem, electrode surface modifications (e.g. Au) by
thiol-based self-assembled monolayers [12,13] or UV/
ozone treatment [14] are effective to reduce the contact
resistance, however, these devices suffer of irreproducibil-
ity and poor long-term reliability due to chemical instabil-
ity of most Au-thiolate SAMs [12], and these methods are
not universal since it is useful for specific combinations
of electrodes and a given semiconductor.

Single-crystal OFETs (SC-OFETs) have enabled the high-
est hole and electron mobility both for vapor-grown crystals
[4,5,18] and for recently developed solution-crystallized or-
ganic semiconductors [6,7] with long-channel-lengths de-
vices. Such SC-OFETs will play a key role in organic circuits
because of not only their exceptional charge carrier mobil-
ity, but also negligible hysteresis and small subthreshold
swing. These features originate from the inherently small
number of charge-trapping states due to their substantial
molecular order. In this report, we fabricated SC-OFETs with
‘micro’ air–gap architectures to minimize the effect of the
interfacial molecular disorder on the contact resistance,
thus combining the high mobility of single crystals and an
ideal metal-to-semiconductor contacts. Free-space gap
structures were first introduced by Menard et al. [4], to
examine the fundamental charge transport property in or-
ganic semiconductor crystals. For that purpose, long channel
lengths (L = �1.3 mm) were adopted to minimize the effect
of the contact resistance. On the other hand, in this study, we
purposely down-scaled the transistor dimension to under-
stand the contact resistance and to examine intrinsic high-
frequency carrier dynamics in organic semiconductors.
The result is that we achieved rubrene SC-OFETs having
the highest cut-off frequency (�25 MHz) in air to date,
which was attributed to both the absence of molecular dis-
order in the vicinity of the source electrode enhancing car-
rier injection and to the minimized parasitic gate-source/
drain electrodes capacitance.

2. Short-channel, single-crystal OFETs gated with air
gaps on Si substrates

2.1. Fabrication of short-channel air–gap structures

Fig. 1a shows a cross-section of the ‘micro’ air–gap SC-
OFET fabricated on a Si substrate having L from 6 lm to
50 lm. These air–gap structures were fabricated by par-
tially dry-etching a Si substrate followed by surface oxida-
tion. Si substrates were vertically etched with mixture
gases of SF6 and CHF3 in portions of 1:1 with the gas pres-
sure of 33 Pa and etching power of 20 W per 707 cm2 area,
using reactive ion etching machine RIE-10N (SAMCO INC.).
The height of the structures was set to be 0.6 lm. After
thermal oxidization of silicon to the thickness of 200 nm,
gold films were vacuum-deposited to the thickness of
13 nm from strictly normal directions to the substrates,
forming gate, drain, and source electrodes at one time. Thin
platelets of either rubrene (for p-type) or fluorocarbon-
substituted dicyanoperylene-3,4:9,10-bis(dicarboximide)
(PDIF-CN2) [18–20] (for n-type) single crystals were grown
by physical-vapor-transport, and placed on the source and
drain electrodes via a natural electrostatic force [5]. As the
result, an air gate insulator forms in the gap space between
the organic single crystal and the gate electrode. Rubrene
materials were purchased from Aldrich Co. and PDIF-CN2

were synthesized at Polyera Co. The sublimation was re-
peated at least twice to purify the crystals for the both
materials. Rubrene crystals were laminated in ambient
conditions and PDIF-CN2 in anaerobic conditions.

Fig. 1b shows a top-view optical micrograph of the rub-
rene air–gap SC-OFETs with L = 6, 9, and 20 lm, based on
an identical crystal. The gap height of 0.6 lm is also com-
mon to the three devices. In Fig. 1c, atomic-force-micro-
scope (AFM) shows that the surface of our single crystals
is extremely smooth, where molecularly flat and defect-
free regions extend from the contacts to the entire channel
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Fig. 1. (a) A cross-sectional illustration of the air–gap SC-OFETs. The lower panel is a conceptual figure to describe carrier injection from a gold electrode to
a rubrene single crystal with an ideal molecular alignment. (b) Optical microscopic image of rubrene air–gap devices with different channel lengths. (c) AFM
image of the surface of a rubrene single crystal, showing a molecularly-flat surface. (d) SEM image of an air–gap structure at the position shown in the
dotted circle in Fig. 1b. The white dotted lines are for eye guide.
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