Characterization of ohmic contacts in polymer organic field-effect transistors

Jin-Guo Yang ${ }^{\text {a, } c}$, Wei-Ling Seah ${ }^{\text {a }}$, Han Guo ${ }^{\text {b }}$, Jun-Kai Tan ${ }^{\text {a }}$, Mi Zhou ${ }^{e}$, Ryosuke Matsubara ${ }^{\text {d }}$, Masakazu Nakamura ${ }^{\text {d }}$, Rui-Qi Png ${ }^{\text {a }}$, Peter K.H. Ho ${ }^{\text {a, ** }}$, Lay-Lay Chua ${ }^{\text {a, b, * }}$
${ }^{\text {a }}$ Department of Physics, National University of Singapore, Lower Kent Ridge Road, S117542, Singapore
${ }^{\mathrm{b}}$ Department of Chemistry, National University of Singapore, Lower Kent Ridge Road, S117543, Singapore
${ }^{\text {c }}$ NUS Graduate School for Integrated Sciences \& Engineering, National University of Singapore, Medical Drive, Singapore S117456, Singapore
${ }^{\text {d }}$ Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma 8916-5, Japan
${ }^{\mathrm{e}}$ BASF South East Asia Pte Ltd, 7 Temasek Boulevard S038987, Singapore

A R T I C L E I N F O

Article history:

Received 30 October 2015
Received in revised form

15 March 2016

Accepted 24 March 2016
Available online 29 July 2016

Keywords:

Contact resistance
Organic semiconductors
Transfer line method
Field-effect transistors
Specific contact resistance
Interface doping

Abstract

It is well known that contact resistance R_{C} limits the performance of organic field-effect transistors (OFETs) that have high field-effect mobilities ($\mu_{\text {FET }} \gtrsim 0.3 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$) and short channel lengths ($L_{\mathrm{ch}} \leq 30 \mu \mathrm{~m}$). The usual transfer-line method (TLM) to analyze R_{c} calls for extrapolation of total resistance to zero L_{ch} at constant drain and gate voltages. This requires an unrealistic assumption that R_{C} does not vary with source-drain current I_{sd} (nor with channel carrier density σ). Here we describe a selfconsistent TLM analysis that instead imposes the condition of constant $I_{\text {sd }}$ and σ. The results explicitly reveal the dependence of R_{c} on I_{sd} and σ. We further describe how this $R_{\mathrm{c}}\left(I_{\mathrm{sd}}, \sigma\right)$ surface can be modelled to yield the specific contact resistivity ρ_{c} of the metal/organic semiconductor (OSC) interface, a key parameter that has so far been neglected in OFETs. We illustrate the application of these analyses to highperformance staggered top-gate bottom-contact poly(2,5-bis(alkyl)-1,4-dioxopyrrolo [3,4-c]pyrrole-3,6-diyl-terthiophene-2, $5^{\prime \prime}$-diyl) (DPPT2-T) OFETs fabricated on bottom Au source-drain electrode arrays, with high contact-corrected μ_{FET} of $0.5 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$. We show that when these electrodes are modified to impose weak, and then strong hole-doping of the DPPT2-T interface, R_{C} diminishes and its dispersion, i.e. dependence on I_{sd} and σ, weakens. The ultimate ρ_{c} attained for the strongly hole-doped contact is $c a$. $1 \Omega \mathrm{~cm}^{2}$, broadly independent of I_{sd} and σ, which we propose is a hallmark of a true metal/OSC ohmic contact. For comparison, the bare Au/DPPT2-T contact gives ρ_{c} of the order of $10 \Omega \mathrm{~cm}^{2}$ with a marked σ dependence. The lowest ρ_{c} reached here shortens the current transfer length down to ca. $5 \mu \mathrm{~m}$, enabling short electrode lengths to be advantageously employed in technology.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The performance of OFETs has vastly improved over the past decade or so primarily due to the emergence of OSCs with high $\mu_{\mathrm{FET}} \gtrsim 0.3 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}[1,2]$. Consequently R_{c} has been recognized since a decade ago as a key performance bottleneck for transistor

[^0]dimensions and geometries of technological relevance. The presence of a large R_{c} decreases the apparent transistor mobility and speed, increasing the stage delay of digital circuits [3]. Yet the nature of R_{C} in OSC devices and how to reduce this in practical technologies have not been well understood despite immense interest. The total resistance (width-normalized; typical units, $\Omega \mathrm{cm}$) across the transistor operated at drain-source voltage V_{ds}, gate-source voltage V_{gs} and source-drain current I_{sd} is given by:
$R_{t o t}=R_{c h}+R_{c}$,
where $R_{\text {tot }}$ is given by $V_{d s} /-I_{s d}, R_{\mathrm{ch}}$ is the channel resistance, and $R_{c}=\sum_{i=s, d} R_{c, i}$ is the contact resistance summed over both source

Fig. 1. Evaluation of R_{c} as a function of ($I_{s d}, \sigma$) using the transmission-line model. (a) Schematic of the TLM and terminology employed in this report. (b) Schematic of the electrostatic potential profile along the semiconductor/dielectric interface of the OFET. (c) Measured potential profile across the channel of a BGBC C ${ }_{14}$-PBTTT OFET with Au contacts using atomic-force-microscope potentiometry. Resolution, 100 nm ; channel length, $9 \mu \mathrm{~m}$. Vertical bars indicate the contact voltage drops. (d) Example $R_{\mathrm{tot}} v s L_{\mathrm{ch}}$ plots to find R_{c} from the $L_{\mathrm{ch}}=0$ intercepts for different I_{sd} at mean $\sigma=1.1 \times 10^{12} \mathrm{~cm}^{-2}$ for PEDT:PSSH-coated Au as source-drain contacts, with DPPT2-T as semiconductor, and 490-nm thick polystyrene as gate dielectric. The global fits are for constant $\mu_{\mathrm{FET}}=0.45 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$. The slopes vary slightly because of the small variation in σ about the mean value.
($i=\mathrm{s}$) and drain ($i=\mathrm{d}$) electrodes (Fig. 1a). This R_{c} is well defined and meaningful for contacts to doped semiconductors, and to undoped semiconductors supporting space-charge-limited-current (SCLC) conduction. I_{sd} passes along the transistor channel and through both contact regions. This cannot be directly measured, but inferred from source current I_{s} or drain current I_{d} after leakage correction. The contact region comprises the electrode/semiconductor contact and the intervening semiconductor layer bridging to the channel. The low R_{ch} that can now be achieved in the transistor "on" state requires R_{c} to be even lower so that the transistor performance is not limited by the contacts [4].

Since R_{ch} is proportional to L_{ch} and inversely proportional to μ_{FET}, the demand on R_{c} has become particularly severe at high μ_{FET} and short L_{ch}. For example, a p-type OFET with $L_{\mathrm{ch}} \approx 30 \mu \mathrm{~m}$ and $\mu_{\mathrm{FET}} \approx 0.3 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$, operating at $\sigma \approx 1.0 \times 10^{12}$ hole cm^{-2}, has an "on" state $R_{\mathrm{ch}} \approx 60 \mathrm{k} \Omega \mathrm{cm}$. Therefore R_{c} needs to be much lower than this value in order to not limit performance. This turns out to be challenging even for the staggered device configurations, i.e. top-gate bottom-contact (TGBC) and bottom-gate top-contact (BGTC) OFETs, let alone the in-plane configurations, i.e. top-gate top-contact (TGTC) and bottom-gate bottom-contact (BGBC) OFETs which additionally suffer from current crowding at the contact edges [4].

In our search for new general methods to reduce R_{C}, we realized it is necessary to also develop a better analysis and understanding of R_{c}. Much of the work over the past decade has focused on characterizing the dependence of R_{c} on V_{ds} and V_{gs} to given in effect the $R_{\mathrm{c}}\left(\mathrm{V}_{\mathrm{ds}}, V_{\mathrm{gs}}\right)$ surface. Several techniques have been developed and refined, including the TLM [5-8], gated four-probe (GFP) measurements [9-13] and scanning potentiometry [14-16], with TLM the technique of choice by far for in device characterization
since it requires only a set of L_{ch} rather than special structures, and is not limited to a particular device configuration [17].

For reasons of simplicity however, R_{C} has been conventionally obtained by extrapolation of $R_{\text {tot }}$ to zero L_{ch} at constant ($V_{\mathrm{ds}}, V_{\mathrm{gs}}$). This requires $\partial R_{c} /\left.\partial L_{c h}\right|_{\left(V_{d s}, V_{s s}\right)}=0$. For R_{c} to remain constant as L_{ch} increases, R_{c} needs to be independent of I_{sd}, since I_{sd} decreases as L_{ch} increases while ($V_{\mathrm{ds}}, V_{\mathrm{gs}}$) is held constant. This prerequisite cannot be met in general, and so this approach is fundamentally flawed. Readers may wish to look ahead to Fig. 3 to see examples of the explicit dependence of R_{c} on I_{sd}. Some authors further impose the condition of intercept convergence for different $V_{g s}$, which requires that both μ_{FET} and R_{c} are both independent of σ, another unrealistic assumption.

Various injection models for the contact and the SCLC conduction model for the contact region intrinsically produce nonlinear current-voltage (IV) characteristics and hence nonlinear R_{c}. For inplane configurations, it is further known that R_{c} decreases with increasing σ because of narrowing of the depletion width at the contact [18], while for staggered configurations, R_{c} may be expected to decrease with increasing σ because of carrier back-diffusion into the contact region to improve injection. Recent work has found that the diffusion tail can contribute to a significant ohmic current in diodes [19]. μ_{FET} may also have a dependence on σ [20]. Thus it is more appropriate to characterize R_{c} at constant (I_{sd}, σ).

Another key feature of early work is their obsession with R_{c} itself. Although R_{C} is an important device parameter, it is not fundamental, but depends on device dimensions and geometry. For the staggered configuration, this includes the intervening semiconductor film thickness t, electrode length L_{e}, current transfer length L_{T}, sheet resistance S of the channel extended over (or under) the contact region, and the specific contact resistance $r_{\mathrm{c}, i}$ of the

https://daneshyari.com/en/article/1264713

Download Persian Version:
https://daneshyari.com/article/1264713

Daneshyari.com

[^0]: * Corresponding author. Department of Chemistry, National University of Singapore, Lower Kent Ridge Road, S117543, Singapore.
 ** Corresponding author. Department of Physics, National University of Singapore, Lower Kent Ridge Road, S117542, Singapore.

 E-mail addresses: phyhop@nus.edu.sg (P.K.H. Ho), chmcll@nus.edu.sg (L.-L. Chua).

