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a b s t r a c t

The velocity profile and radiation pressure field of a bubble cluster containing several thousand micro
bubbles were obtained by solving the continuity and momentum equations for the bubbly mixture. In
this study, the bubbles in the cluster are assumed to be generated and collapsed synchronously with
an applied ultrasound. Numerical calculations describing the behavior of a micro bubble in a cluster
included the effect of the radiation pressure field from the synchronizing motion of bubbles in the cluster.
The radiation pressure generated from surrounding bubbles affects the bubble’s behavior by increasing
the effective mass of the bubble so that the bubble expands slowly to a smaller maximum size. The light
pulse width and spectral radiance from a bubble in a cluster subjected to ultrasound were calculated by
adding a radiation pressure term to the Keller–Miksis equation, and the values were compared to exper-
imental values of the multibubble sonoluminescence condition. There was close agreement between the
calculated and observed values.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that in multi-bubble sonoluminescence (MBSL),
several thousands of micro-bubbles are generated and collapsed
synchronously with an applied ultrasound [1–3]. Recent measure-
ments on the pulse width of a cloud of bubbles subjected to ultra-
sound using a time-correlated single photon counting technique
indicated that the bubbles in a cloud collapse simultaneously to
emit a light that is synchronous with the applied ultrasound [4].

A spherical bubble cloud subjected to harmonic far-field pres-
sure excitation was investigated by Omta [5] and D’Agosta and
Brennen [6]. They revealed that the natural frequency of the bub-
ble cluster is always less than the natural frequency of the individ-
ual bubbles. Oguz and Prosperetti [7] investigated the interaction
of two 100 lm bubbles subjected to an ultrasound with a moder-
ate amplitude. Mettin et al. [8] considered the mutual interaction
between two micro bubbles (R0 < 10 lm) in a strong acoustic field
(Pa > 1 bar, fd = 20 kHz). They found that the strength and direction
of the secondary Bjerknes forces due to the radiation generated by
other bubbles differed from the forces predicted by linear theory.
Yasui et al. [9] performed numerical simulations on a system of
two bubbles and considered the interactions between n numbers
of bubbles. They found that the expansion of a bubble during the
rarefaction phase of ultrasound was strongly reduced by the
presence of other bubbles in the cluster. They also obtained the

pressure field of the center of a cloud of similarly sized, homoge-
neously distributed bubbles which pulsated together with an ap-
plied ultrasound. An [10] obtained the radiation sound pressure
from the other bubbles acting on a particular bubble in a cluster.
He investigated the collective motion of similarly sized microbub-
bles in a cluster and found that the radiation pressure term added
in the Keller–Miksis (KM) equation considerably suppresses bub-
ble motion. Recently, Dzaharudin et al. [11] performed numerical
simulations of a cluster of encapsulated microbubbles by adding
the interaction term in the KM equation. They found that the oscil-
lation amplitude of microbubbles that are close together was re-
duced for a given applied ultrasound power.

In this study, MBSL is studied hydro-dynamically to obtain the
velocity profile and radiation pressure field by solving the continu-
ity and momentum equations for a spherical cluster containing
numerous microbubbles. The calculated pulse width and spectral
radiance for a bubble with the radiation pressure added in the
KM equation are compared with the measured pulse width and
spectral radiance values of the MBSL.

2. Single bubble behavior in an ultrasonic field

2.1. A set of analytical solutions for the Navier–Stokes equations

The hydrodynamics related to the single bubble sonolumines-
cence phenomenon involves in solving the Navier–Stokes equa-
tions for the gas inside a bubble and the liquid adjacent to the
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bubble wall. The mass, momentum and energy equations for the
gas inside a spherical bubble are given as;
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where r is the distance from center, qg is the gas density, ug is the
gas velocity which obeys ug (Rb, t), the bubble wall velocity, Pb is
the gas pressure, Cv,b is a constant volume specific heat and qr is
the radial component of heat flux inside a bubble.

A set of analytical solutions for the above conservation equa-
tions [12,13] is given as;
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where q0 is the gas density at bubble center and qr is the radial
dependent gas density, which are given as q0R3

b ¼ const: and

qr ¼ ar2=R5
b ;respectively. The constant a is related to the gas mass

inside a bubble and was taken as �5q0/(4p). Pb0 is the gas pressure
at bubble center. The linear velocity profile describing the spatial
in-homogeneities inside the bubble is a crucial ansatz for the
homologous motion of a spherical object, which is encountered in
another energy focusing mechanism of gravitational collapse [14].
The quadratic pressure profile given in Eq. (6), was recently verified
by comparisons with direct numerical simulations [15].

The temperature profile due to the uniform pressure distribu-
tion Tb(r) is well known and is valid for a non-sonoluminescing
gas bubble [16]:
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where A and B are the are the coefficients of the temperature-
dependent gas conductivity which has the form kg = AT + B [17],
where g = (Rb/d)/(kl/B) and kl is the thermal conductivity of the li-
quid, d is thermal boundary layer thickness. The temperature at
the bubble wall, Tbl in Eq. (9), can be obtained from Eq. (8) with a
boundary condition of Tb Tb (Rb,t) = Tbl. The temperature is given as
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The temperature distribution given in Eq. (8) is valid until the
characteristic time for the vibrational motion of the molecules is
much less than the relaxation time for the translational motion
of molecules [18].

The temperature rise and subsequent quenching due to bubble
wall acceleration is given by:
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The coefficient C(t) may be determined from the boundary con-
dition at the wall, k0gdT 0b=dr ¼ kldTl=dr;where Tl is the quadratic
temperature distribution in the thermal boundary layer with a
thickness d0. That is,
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The temperature distribution inside a bubble may be estimated
from Eqs. (7), (8), and (10) with appropriated values of d0 and k0g ,
where k0g is gas conductivity in a dense plasma state [19]. The
boundary layer thickness d0 may be determined from the relation
4pklR

2
bðTbl � T1Þ=d0 ¼ P, where P is the power loss due to the brake

radiation (bremsstrahlung) [12]. The temperature profile given in
Eq. (10) yields a thermal spike when the acceleration of the bubble
wall exceeds 1012 m/s2 [12] while the temperature distribution gi-
ven in Eq. (8) provides a background temperature.

The mass and momentum equation for the liquid adjacent to
the bubble wall provides the well-known KM equation describing
the motion for the bubble wall [20], which is valid when the bub-
ble wall velocity does not exceed the speed of sound in the liquid.
That is,
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where Rb is the bubble radius, Ub is the bubble wall velocity, CB is
the speed of sound in the liquid at the bubble wall, and q1 and
P1 are the medium density and pressure, respectively. The liquid
pressure on the external side of the bubble wall PB is related to
the pressure inside the bubble wall Pb by PB = Pb � 2r/Rb � 4lUb/
Rb where r and l are the surface tension and dynamic viscosity
of the liquid, respectively. The pressure of the driving sound field
Ps may be represented by a sinusoidal function such as Ps = �PA-

sin(xt) where PA is the driving sound amplitude, x = 2pfd and fd

is frequency. For incompressible limit or Ub/CB ? 0, the KM equa-
tion reduces to the Rayleigh–Plesset equation.

The mass and energy equation for the liquid provides a time-
dependent first order equation for the thermal boundary layer
thickness d assuming a quadratic in temperature profile, which is
given by [21],
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where a is the thermal diffusivity of liquid. The above equation
determines the heat flow rate through the bubble wall. The values
for instantaneous bubble radius, bubble wall velocity and accelera-
tion and the thermal boundary layer thickness obtained from Eqs.
(12) and (13) are used to calculate the density with Eq. (4), velocity
with Eq. (5), pressure with Eq. (6) and temperature profile with Eq.
(7) for the gas inside the bubble without any further assumptions.

2.2. Numerical integration of bubble wall motion

The KM equation, Eq. (12), is usually integrated numerically,
with being normalized by the appropriate physical variables. The
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