

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Numerical investigations of heat losses to confinement structures from hydrogen-air turbulent flames in ENACCEF facility

Jianjun Xiao^{a,*}, John R. Travis^b, Mike Kuznetsov^a

^a Institute of Nuclear and Energy Technologies, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany ^b Engineering and Scientific Software Inc., Santa Fe, NM 87505, USA

ARTICLE INFO

Article history: Received 24 May 2015 Received in revised form 12 July 2015 Accepted 17 July 2015 Available online 20 August 2015

Keywords: Heat losses Turbulent flame Hydrogen safety GASFLOW-MPI code

ABSTRACT

In hydrogen safety analysis, structure response due to the pressure and thermal loads from the combustion is of great concern. It is of high significance to understand not only the combustion process itself, but also the heat losses from the combustion products to the solid structures which may have strong impacts on the pressure and temperature decays. In many previous numerical simulations, heat losses from turbulent hydrogen flames to the confinement structures were usually considered to be negligible or less important. However, it has been revealed by many experimental studies that modeling of heat losses from the combustion products is important for accurate predictions. Our objectives are to study the importance of various heat transfer mechanisms and their relative contributions to the total energy losses. Numerical investigations on the mechanisms of heat losses caused by propagating turbulent flames were performed using a semi-implicit pressurebased all-speed CFD code GASFLOW-MPI. Heat losses from turbulent sonic flames to the structures of the ENACCEF facility at IRSN were studied. It appears that the effect of heat losses on the flame propagation properties is not significant. However, the impacts of heat losses on the pressure peak and pressure decay after hydrogen combustions should not be neglected. It indicates from our simulation results that the convective heat transfer and thermal radiative heat transfer are the main contributors of the total energy losses to the structures of ENACCEF. In our cases, the effect of steam condensation heat transfer is relatively small but not negligible. The relative contributions of various heat transfer mechanisms could be different in other experimental facilities with various geometrical configurations, various internal structures, and various optical and thermal characteristics of the burnable gas mixtures. In general, it is suggested to include the heat transfer mechanisms in order to improve the reliability and accuracy of numerical analyses of hydrogen safety issues.

Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

* Corresponding author.

0360-3199/Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

E-mail addresses: jianjun.xiao@kit.edu (J. Xiao), jack_travis@comcast.net (J.R. Travis), mike.kuznetsov@kit.edu (M. Kuznetsov). http://dx.doi.org/10.1016/j.ijhydene.2015.07.090

arradiation constantSiturbulent fiame speedAoutward normal fractional area vectorSisource term of volumeAcell face area for walls or the exposed area for internal structuresSisource term of speciesAconstant coefficient in Zimont modelTgas temperaturebthe velocity of the control surface ST/wtemperature inside the solid structureC-speed of lightUuvelocity vector of the fluidC-1constant coefficientuvelocity vector of the fluidC-2constant coefficientuvelocity vector of the fluidC-3constant coefficientuvelocity vector of the fluidC-4constant coefficientuvelocity vector with the two wall tangential velocityC-7specific heat of the water vapor at constanturdimensionless velocitypressureU'dimensionless velocityurDDakohler numberU'dimensionless velocityD,1molecular diffusivityy'distance to the surfaceD,1molecular diffusivityy'distance to the surfaceD,1urbulent molecular diffusivityy'distance forth efficientD,4mast fraction of hydrogen after combustionradiation energy densityD,4internal energy of the water vaporradiation energy densityD,4internal energy of the water vaporradiation energy densityD,4internal energy of the water vaporradiation energy density <th colspan="2">Nomenclature</th> <th>S_m</th> <th>source term of momentum</th>	Nomenclature		S_m	source term of momentum
a Dutward normal fractional area vector Sy- source term of volume As cell face area for walls or the exposed area for internal structures Sy- source term of mean reaction progress variable As constant coefficient in Zimont model T gas temperature As constant coefficient T- gas temperature Ca constant coefficient u velocity of the fluid Ca constant coefficient u velocity velocity of the fluid Ca constant coefficient u velocity velocity of the fluid Ca constant coefficient u/ric friction speed Cy- coeffic heat capacity u/ric friction speed Da Damkohler number U- radiation energy density Da Damkohler number U- radiation energy density Da molecular diffusivity y distance Da mask transfer coefficient Yizz mass fraction of hydrogen after combustion Aria mass fraction of hydrogen after combustion Yizz mass fraction of hydrogen after com	a	radiation constant	St	turbulent flame speed
As collate area for walls or the exposed area for internal structures 5, source term of species As constant coefficient in Zimont model 5, source term of mean reaction progress variable b the velocity of the control surface S T surface temperature inside the solid structure C constant coefficient u velocity vector of the fluid C_a constant coefficient u velocity vector of the fluid C_a constant coefficient u velocity vector of the fluid C_a constant coefficient u velocity vector of the fluid C_a constant coefficient u/r wall shear speed Q _a onstant instructure drag vector u/r dimensionless velocity D _a mask transfer coefficient Varge mask fraction of hydrogen D _a /d means addifusivity y' distance to the surface varge D _a /d means addifusivity y' distance to the surface varge D _a /d mean addifusivity y' distance to the surface varge D _a /d means addifusion flux vector a thermal	Δ	outward pormal fractional area vector	S _V	source term of volume
Pase Constant coefficient in Zimont model T gas temperature Az constant coefficient in Zimont model T gas temperature Call constant coefficient T gas temperature Call constant coefficient u velocity of the fuid Call constant coefficient u velocity velocity of the fuid Call constant coefficient u velocity velocity velocity velocity velocity velocity velocity velocity Call constant coefficient u velocity velocity velocity velocity velocity velocity velocity Call constant coefficient u velocity velocity velocity velocity velocity velocity Call constant coefficient u/re wall share speed Call pressure U're radiation energy density Da Damkoher number U're radiatione entro the first cell Daff effective molecular diffusivity y're distance from the first cell Daff internal structure drag vector Yre distance from the first cell Ar nass transfer coefficient Yrazionat mass fraction of hydrogen after combustion <	Ac	cell face area for walls or the exposed area for	$S_{ ho,lpha}$	source term of species
ActInternal autochoiceTgas temperaturebthe velocity of the control surface STtemperature inside the solid structurecspeed of lightuvelocity vector of the fluidCa:constant coefficientuvelocity vector of the fluidCa:constant coefficientuwelcotity at the two wall tangential velocityCa:constant coefficientuwall shear speedDeffeffective molecular diffusivityydistance the surfaceDefmolecular diffusivityydistance the surfaceDeftubelent molecular diffusivityydistance the surfaceDeftubelent molecular diffusivityydistance the first cell center to the wallDeftubelent molecular diffusivityydistance the first cell center of hydrogenDefcorrected mass-transfer coefficientYitz/mainmass fraction of hydrogen after combustionNitosectific internal energy of the water vaporGreek symbolsdissipation rate of turbulent kinetic energyLineturbulent kinetic energy of the water vapordissipation rate of turbulent kinetic energyLineturbulent kinetic energy production by viscousedissipation rate of turbulent ki	715	internal structures	S_{ξ}	source term of mean reaction progress variable
$ \begin{array}{cccc} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	۸	constant coefficient in Zimont model	Т	gas temperature
D the velocity of the Control solutions Tw temperature inside the solid structure Cs constant coefficient u velocity vector of the fluid Cs/ constant coefficient u a vector with the two wall tangential velocity components Cs/ constant coefficient Ur wall shear speed Cs/ specific heat of the water vapor at constant u' main since wall shear speed Cs/ pressure u' main since wall shear speed Da Damkohler number U' radiation energy density Da molecular diffusivity y' distance to the surface Dr, turbulent molecular diffusivity y' distance from the first cell center to the wall Dr, turbulent molecular diffusivity y' distance from the first cell center to the wall Dr, turbulent diffusivity y' distance from the first cell center to the wall Dr, turbulent diffusivity y' distance from the first cell center to the wall Dr, turbulent diffusivity y' distance from the first cell center on busition	A _Z	the velocity of the control surface S	Ts	structural surface temperature
Cspeed of nghtuvelocity vector of the fluidGetconstant coefficientuca vector with the two wall tangential velocity componentsGetspecific heat capacityUrfirstion speedGetspecific heat capacityuwall shars speedCeptospecific heat capacityUrradiation energy densityDaDamkohler numberUrradiation energy densityDaDamkohler numberUrvelocity at the center of the first cellDaffeffective molecular diffusivityydimensionless wall distanceDaffeffective filldimensionless wall distancedimensionless wall distanceDaffeffective fillydimensionless wall distanceDaffeffective filldimensionless wall distancedimensionless wall distanceDaffeffective filldimensionless wall distancedimensionless wall distanceDaffeffective filldimensionless wall distancedimensionless wall distanceDaffeffective fill <td>0</td> <td>aneed of light</td> <td>Tw</td> <td>temperature inside the solid structure</td>	0	aneed of light	Tw	temperature inside the solid structure
CastConstant coefficientuca vector with the two wall tangential velocity componentsCg.constant coefficientmean coefficientcomponentsCg.specific heat capacityU/with wall shear speedQaphoespecific heat apacityU/radiation energy densityDa Damkohler numberUfradiation energy densityDaffeffective molecular diffusivityydistance from the first celldistanceDrturbulent molecular diffusivityy*distance from the first cell center to the wallDaftturbulent molecular diffusivityy*distance from the first cell center to the wallhatmass transfer coefficientYts_pinetalhatcorrected mass-transfer coefficientYts_pinetalhatstarter coefficientYts_pinetalhatturbulent length scaleedissipation rate of turbulent kinetic energyLmostart appendix provide on or vaporization rateedissipation rate of turbulent kinetic energyLmostart vapor approxization rateemass transfer coefficientht_tostart appendix provident by viscous μ_{eff} effective viscosityLmostart dip ressurekturbulent kinetic energyht_tostart appendix μ_{eff} effective viscosityht_tostart appendix μ_{eff} effective viscosityht_tostart appendix μ_{eff} effective viscosityht_tostart appendix μ_{eff} ef	C C	speed of light	u	velocity vector of the fluid
Current Constant coefficientcomponents C_{μ} specific heat capacity u_{\mure} friction speed C_{p,h_0} specific heat of the water vapor at constant u^* dimensionless velocity D_{aff} pressure U^* radiation energy density D_{aff} prefective molecular diffusivity y^* distance to the surface D_{aff} molecular diffusivity y^* distance to the surface D_{aff} turbulent molecular diffusivity y^*_{t} distance from the first cell center to the wall D_{aff} mass transfer coefficient Y_{12} mass fraction of hydrogen before combustion h_a^* corrected mass-transfer coefficient $Y_{122, pinul}$ mass fraction of hydrogen before combustion h_a^* corrected mass-transfer coefficient $Y_{122, pinul}$ mass fraction of hydrogen before combustion h_a^* corrected mass-transfer coefficient $Y_{122, pinul}$ mass fraction of hydrogen before combustion h_a^* assifitusion flux vector a thermal diffusivity of unburnt mixture k thermal conductivity of the solid structure a_r absorption coefficient h_{aff} urbulent kinetic energy $e_r H_{hO}$ grey medium total emissivity h_{aff} seam mole fraction Θ_m mass transfer coefficient h_{aff} urbulent kinetic energy production by viscous μ_{aff} effective viscosity P_{he} turbulent kinetic energy production by viscous μ_{aff} effective viscosity P_{he} <t< td=""><td>C_{e1}</td><td>constant coefficient</td><td>uc</td><td>a vector with the two wall tangential velocity</td></t<>	C_{e1}	constant coefficient	uc	a vector with the two wall tangential velocity
C_{μ} Constant control u_{pre} friction speed $C_{p,b,o}$ specific heat capacity u^{pre} wall shear speed $C_{p,b,o}$ specific heat capacity u^{pre} wall shear speed D_{eff} effective molecular diffusivity U^{rorg} velocity at the center of the first cell D_{eff} effective molecular diffusivityydistance to the surface D_{f} molecular diffusivityy'distance to the surface D_{f} turbulent molecular diffusivityy'distance from the first cell center to the wall D_{a}^{r} mass transfer coefficientYizmass fraction of hydrogen before combustion h_{a}^{*} corrected mass-transfer coefficientYizmass fraction of hydrogen before combustion h_{a}^{*} oprecefficientGreek symbols $I_{a}^{r,A}$ mass diffusion flux vector a thermal diffusivity of unburnt mixture k thermal conductivity of the solid structure a_{r} absorption coefficient $h_{a}^{r,b}$ wall condensation or vaporization rate ξ mean reaction progress variable $h_{a,0}$ seem mole fraction Θ_m mass fraction coefficient $h_{a}^{r,b}$ turbulent length $e_{r,t_{a}^{r,0}$ grey medium total emissivity $h_{b,0}$ stam mole fraction Θ_m mass fraction of hydrogen after combustion $h_{a}^{r,b}$ urbulent kinetic energy production by viscous $\mu_{eff}^{r,f}$ feffective viscosity $P_{eff}^{r,f}$ turbulent kinetic energy production by vis	C_{e2}	constant coefficient		components
C _p Specific heat of the water vapor at constant u ⁺ will shear speed C _{ph} _b pressure U ⁺ dimensionless velocity Da Damkohler number U ⁺ radiation energy density Daff effective molecular diffusivity y distance to the surface D ₁ molecular diffusivity y ⁺ distance to the surface D ₁ turbulent molecular diffusivity y ⁺ distance from the first cell center to the wall A ₁ mass transfer coefficient Y ₁₂₂ , mitial mass fraction of hydrogen before combustion h ₄ mass transfer coefficient Y _{122,initial} mass fraction of hydrogen after combustion h ₄ mass transfer coefficient Y _{122,initial} mass fraction of hydrogen after combustion h ₄ turbulent length scale e dissipation rate of turbulent kinetic energy h ₄ turbulent length scale e dissipation rate of turbulent kinetic energy h ₄ turbulent kinetic energy production by viscous μ_{ii} mass transfer coefficient h ₆ effective broadening pressure λ mean r	C_{μ}	constant coefficient	u _{fric}	friction speed
cp,bc,cpspecific the value? vapor at constantu*dimensionless velocityDaDamkohler numberU'radiation energy densityDaffeffective molecular diffusivityydistance to the surfaceDeffmolecular diffusivityy*distance to the surfaceDefmolecular diffusivityy*distance to the surfaceDef turbulent molecular diffusivityy*distance to the surfaceDef turbulent molecular diffusivityy*distance from the first cell center to the wallDef mass transfer coefficientYs2mass fraction of hydrogen before combustionhsheat transfer coefficientYs2mass fraction of hydrogen after combustionhsheat transfer coefficientYs2mass fraction of hydrogen after combustionht,ospecific internal energy of the water vaporáthermal diffusivity of unburnt mixturekturbulent length scaleedissipation rate of turbulent kinetic energyht,osteam mole fraction Θ_m mass transfer coreficientht,osteam mole fraction Θ_m mass transfer coreficientfittur	C _P	specific heat of the water water of constant	U*	wall shear speed
Day Day Damkohler numberUf radiation energy density velocity at the center of the first cell usingDeffeffective molecular diffusivityy*distance to the surfaceDrturbulent molecular diffusivityy*distance to the surfaceDrturbulent molecular diffusivityy*distance from the first cell center to the wallDrturbulent molecular diffusivityy*distance from the first cell center to the wallDrturbulent molecular diffusivityy*distance from the first cell center to the wallDrturbulent molecular diffusivityy*distance from the first cell center to the wallDrturbulent molecular diffusivityy*mass fraction of hydrogen before combustionhsheat transfer coefficientYtz_fmalmass fraction of hydrogen after combustionhsheat transfer coefficientYtz_fmalmass fraction of hydrogen after combustionhsmeat conductivity of the solid structureathermal diffusivity of unburnt mixturekthermal conductivity of the solid structureadissipation rate of turbulent kinetic energyhmsmean beam lengtherdissipation rate of turbulent kinetic energyhtswall condensation or vaporization ratethermal conductivityhtswall condensation or vaporization pressurekmean free pathhtsturbulent kinetic energy production by viscousµdfeffective viscosityhtsstrubulent kinetic energy production by viscousµdfeffective viscosity	C_{p,h_2o}	specific neat of the water vapor at constant	u^+	dimensionless velocity
Date DeffData bank online runnoer is molecular diffusivityUtang yvelocity at the center of the first cell distance to the surfaceD1molecular diffusivityydistance to the surfaceD4turbulent molecular diffusivityydistance from the first cell center to the wallD4mass transfer coefficientY12mass fraction of hydrogenhamass transfer coefficientY12mass fraction of hydrogen after combustionhacorrected mass-transfer coefficientY12, initialmass fraction of hydrogen after combustionhacorrected mass-transfer coefficientY12, initialmass fraction of hydrogen after combustionhamass diffusion flux vectoráthermal diffusivity of unburnt mixturekthermal conductivity of the solid structurea, a absorption coefficientl,turbulent length scaleedisispation rate of turbulent kinetic energyLmsmean beam lengther, Hogrey medium total emissivitymswall condensation or vaporization rateEmean reaction progress variablehttp://steam mole fraction Θ_m mass transfer corect coefficient $P_{tb,0}$ steam structic energy production by viscous μ_{eff} effective viscosity $P_{tb,0}$ structure the surface temperature $P_{s,osturation}$ structure vapor density at the $P_{s,osturation}$ saturation pressure A_{to} constant coefficient $P_{tb,0}$ turbulent rander pressure σ_{to} constant coefficient	De	pressure Develophen number	U^r	radiation energy density
Defi penectuar diffusivityydistance to the surface dimensionless wall distanceDr tturbulent molecular diffusivityy*distance from the first cell center to the wall 	Da	Damkonier number	U _{tang}	velocity at the center of the first cell
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D _{eff}	effective molecular diffusivity	y	distance to the surface
$ \begin{array}{cccccc} p_{c} & \text{distance from the first cell center to the wall} \\ p_{c} & \text{distance from the first cell center to the wall} \\ p_{d} & \text{mass transfer coefficient} & Y_{12} & \text{mass fraction of hydrogen before combustion} \\ p_{d} & \text{corrected mass-transfer coefficient} & Y_{12,initial} & \text{mass fraction of hydrogen after combustion} \\ p_{fio} & \text{specific internal energy of the water vapor} & Greek symbols \\ p_{e} & \text{distingtion flux vector} & \dot{a} & \text{thermal influsivity of unburnt mixture} \\ k & \text{thermal conductivity of the solid structure} & a_r & \text{absorption coefficient} \\ l_t & \text{turbulent length scale} & e & \text{dissipation rate of turbulent kinetic energy} \\ p_{m_s} & \text{man beam length} & e_{r,H_0} & \text{grey medium total emissivity} \\ m_k & \text{wall condensation or vaporization rate} & \xi & mean reaction progress variable \\ P_{k} & \text{effective broadening pressure} & \kappa & \text{turbulent kinetic energy} \\ P_{H_0} & \text{water vapor partial pressure} & \lambda & mean free path \\ P_k & \text{turbulent kinetic energy production by viscous} & \mu_{eff} & \text{effective viscosity} \\ \text{forces} & r & \text{molecular viscosity} \\ P_{h_k} & \text{turbulent kinetic energy production by viscous} & p_{h_0} & \text{water vapor density in the gas mixture} \\ P_{a,saturation} & \text{saturation pressure} & \sigma & \text{Stefan-Boltzmann constant} \\ q_i & \text{radiation flux vector} & \sigma_b & \text{constant coefficient} \\ q_{s,cont/m_0} & \text{energy delivered to the structural surfaces by} & \sigma_c & \text{constant coefficient} \\ q_{s,cont/m_0} & \text{energy delivered to the structural surfaces by} & \sigma_c & \text{constant coefficient} \\ q_{s,cont/m_0} & \text{energy delivered to the structural surfaces by} & \sigma_c & \text{constant coefficient} \\ q_{s,cont/m_0} & \text{energy delivered to the structural surfaces by} & \sigma_c & \text{constant coefficient} \\ q_{s,cont/m_0} & \text{energy delivered to the structural surfaces by} & \sigma_c & \text{constant coefficient} \\ q_{s,cont/m_0} & \text{energy delivered to the structural surfaces by} & \sigma_c & \text{constant coefficient} \\ q_{s,cont/m_0} & energy delivered to the structural s$	D _l		y ⁺	dimensionless wall distance
$ \begin{array}{cccc} \mathbf{P}_{H2} & \text{mass fraction of hydrogen} \\ \mathbf{h}_{d} & \text{mass transfer coefficient} \\ \mathbf{h}_{s}^{d} & \text{corrected mass-transfer coefficient} \\ \mathbf{h}_{s}^{d} & \text{corrected mass-transfer coefficient} \\ \mathbf{h}_{s}^{d} & \text{corrected mass-transfer coefficient} \\ \mathbf{h}_{s}^{d} & \text{mass fraction of hydrogen after combustion} \\ \mathbf{h}_{H20}^{d} & \text{specific internal energy of the water vapor} & Greek symbols \\ \mathbf{h}_{s}^{d} & \text{thermal conductivity of the solid structure} \\ \mathbf{k} & \text{thermal conductivity of the solid structure} & \mathbf{a}_{r} & \text{absorption coefficient} \\ \mathbf{k} & \text{thermal conductivity of the solid structure} & \mathbf{a}_{r} & \text{absorption rate of turbulent kinetic energy} \\ \mathbf{L}_{m3} & \text{mean beam length} & \mathbf{e}_{r,H_{2}} & \text{grey medium total emissivity} \\ \mathbf{h}_{s}^{d} & \text{wall condensation or vaporization rate} & \mathbf{e} & \text{dissipation rate of turbulent kinetic energy} \\ \mathbf{h}_{s}^{d} & \text{wall condensation or vaporization rate} & \mathbf{e} & \text{turbulent kinetic energy} \\ \mathbf{h}_{s}^{d} & \text{wall condensation or vaporization pressure} & \mathbf{k} & \text{turbulent kinetic energy} \\ \mathbf{h}_{s}^{d} & \text{wall vapor partial pressure} & \mathbf{k} & \text{turbulent kinetic energy} \\ \mathbf{h}_{s}^{d} & \text{water vapor partial pressure} & \mathbf{h}_{s}^{d} & \text{indermal viscosity} \\ \mathbf{h}_{s}^{d} & \text{turbulent kinetic energy production by viscous} & \mu_{eff} & \text{effective viscosity} \\ \mathbf{h}_{s}^{d} & \text{turbulent kinetic energy production by buoyant} & \mu_{t} & \text{turbulent viscosity} \\ \mathbf{h}_{s}^{d} & \text{turbulent kinetic energy production by buoyant} & \mu_{s} & \text{sutration pressure at the surface temperature} \\ \mathbf{p}_{s,saturation} & \text{saturation pressure} at the surface temperature \\ \mathbf{p}_{s,saturation} & \text{saturation pressure} & \mathbf{r}^{b} & \text{constant coefficient} \\ \mathbf{q}_{s,cond/vap} & \text{energy delivered to the structural surfaces by} & \sigma_{b} & \text{constant coefficient} \\ \mathbf{q}_{s,cond/vap} & \text{energy delivered to the structural surfaces by} & \sigma_{c} & \text{constant coefficient} \\ \mathbf{q}_{s,cond/vap} & \text{energy delivered to the structural surfaces by} & \sigma_{c} & constant coe$	D_t	turbulent molecular diffusivity	y _c	distance from the first cell center to the wall
h_d mass transfer coefficient $Y_{H2,inthid}$ mass fraction of hydrogen before combustion h_d^* corrected mass-transfer coefficient $Y_{H2,inthid}$ mass fraction of hydrogen after combustion $I_{H2,0}$ specific internal energy of the water vapor $Greek symbols$ I_{u+0} specific internal energy of the solid structure a_r absorption coefficientkthermal conductivity of the solid structure a_r absorption coefficientkturbulent length scale e dissipation rate of turbulent kinetic energy L_{ms} mean beam length e_{r,H_0} grey medium total emissivity m_s wall condensation or vaporization rate ξ mean reaction progress variable $M_{H_2,0}$ steam mole fraction Θ_m mass transfer coefficient h_{d_0} water vapor partial pressure λ mean free path P_k turbulent kinetic energy production by viscous μ_{eff} effective viscosity μ_{t_0} water vapor partial pressure μ_{t_0} water vapor density in the gas mixture P_{k_b} turbulent kinetic energy production by buoyant μ_t turbulent viscosity Pr_t turbulent pressure at the surface temperature σ_{t_0} Stefan-Boltzmann constant q_{t_0} rateral energy flux vector σ_t Stefan-Boltzmann constant q_{t_0} rateral energy delivered to the structural surfaces by steam main phase change δ_c chemal conductivity $q_{s,conv}$ neergy delivered to the structural surfaces by steam	D _d •A	internal structure drag vector	Y _{H2}	mass fraction of hydrogen
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	h _d	mass transfer coefficient	Y _{H2.initial}	mass fraction of hydrogen before combustion
Insheat transfer coefficienttransfer $I_{it_i,0}$ specific internal energy of the water vaporGreek symbols J_{q^*A} mass diffusion flux vector \hat{a} thermal diffusivity of unburnt mixturekthermal conductivity of the solid structure a_r absorption coefficient l_t turbulent length scale e dissipation rate of turbulent kinetic energy L_{ms} mean beam length e_r, H_{i0} grey medium total emissivity m_{is} wall condensation or vaporization rate ξ mean reaction progress variable $n_{H_{i0}}$ steam mole fraction Θ_m mass transfer correct coefficient $n_{H_{i0}}$ steam mole fraction production by viscous μ_{eff} effective viscosity p_{k} turbulent kinetic energy production by viscous μ_{eff} effective viscosity p_{k_b} turbulent kinetic energy production by buoyant μ_t turbulent viscosity p_{k_b} turbulent brandtl number p_{H_{20} water vapor density in the gas mixture $p_{s,saturation}$ saturation pressure at the surface temperature $p_{b,saturation}$ the saturation water vapor density at the $p_{s,saturation}$ readiation flux vector σ_b constant coefficient q_i radiation flux vector σ_b constant coeffici	h_d^*	corrected mass-transfer coefficient	Y _{H2.final}	mass fraction of hydrogen after combustion
$ \begin{array}{cccc} & {\rm J}_{z}{\bf A} & {\rm mass diffusion flux vector} & \dot{a} & {\rm thermal diffusivity of unburnt mixture} \\ & {\rm thermal conductivity of the solid structure} & {\rm a} & {\rm absorption coefficient} \\ & {\rm turbulent length scale} & {\rm e} & {\rm dissipation rate of turbulent kinetic energy} \\ & {\rm mass} & {\rm mean beam length} & {\rm e}_{r,H_2O} & {\rm grey medium total emissivity} \\ & {\rm mean beam length} & {\rm e}_{r,H_2O} & {\rm grey medium total emissivity} \\ & {\rm fs} & {\rm wall condensation or vaporization rate} & {\rm fs} & {\rm mean reaction progress variable} \\ & {\rm Ph}_{i,O} & {\rm steam mole fraction} & {\rm Θ_m} & {\rm mass transfer correct coefficient} \\ & {\rm P_e} & {\rm effective broadening pressure} & {\rm κ} & {\rm turbulent kinetic energy} \\ & {\rm Mist conductive vapor partial pressure} & {\rm μ_i} & {\rm mean free path} \\ & {\rm P_k} & {\rm turbulent kinetic energy production by viscous} & {\rm μ_{if}} & {\rm molecular viscosity} \\ & {\rm $freess} & {\rm μ_{if}} & {\rm molecular viscosity} \\ & {\rm $freess} & {\rm μ_{if}} & {\rm molecular viscosity} \\ & {\rm $freess} & {\rm μ_{if}} & {\rm molecular viscosity} \\ & {\rm P_{rk}} & {\rm turbulent kinetic energy production by buoyant} & {\rm μ_{t}} & {\rm turbulent prandtl number} \\ & {\rm $\rho_{s,saturation}$} & {\rm $saturation pressure} & {\rm $the surface temperature} \\ & {\rm $\rho_{s,saturation}$} & {\rm $saturation pressure} & {\rm $the surface temperature} \\ & {\rm $q_{s,condvorp}$} & {\rm $energy delivered to the structural surfaces by} & {\rm σ_{b}} & {\rm $constant coefficient} \\ & {\rm $q_{s,condvorp}$} & {\rm $energy delivered to the structural surfaces by} \\ & {\rm $steam phase change} & {\rm δ_{s}} & {\rm $wall shear stress} \\ & {\rm $fex $ ratio} & {\rm σ_{s}} & {\rm $constant coefficient} \\ & {\rm $q_{s,condvorp}$} & {\rm $energy delivered to the structural surfaces by} \\ & {\rm $steam phase change} & {\rm δ_{s}} & {\rm $wall shear stress} \\ & {\rm $fex $ ratio} & {\rm $constant coefficient} \\ & {\rm $s_{s,condvorp}$} & {\rm $energy delivered to the structural surfaces by} \\ & {\rm s_{s}} & {\rm $shear stress} \\ & {\rm $fex $ ra$	hs	heat transfer coefficient		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I_{H_2O}	specific internal energy of the water vapor	Greek sy	mbols
kthermal conductivity of the solid structure a_r absorption coefficient l_t turbulent length scale ε dissipation rate of turbulent kinetic energy L_{ms} mean beam length ε_r grey medium total emissivity m_{is} wall condensation or vaporization rate ξ mean reaction progress variable n_{Hj0} steam mole fraction Θ_m mass transfer correct coefficient P_e effective broadening pressure κ turbulent kinetic energy P_{hj0} water vapor partial pressure λ mean free path P_k turbulent kinetic energy production by viscous μ_{eff} effective viscositystresses μ_l molecular viscosity P_{kb} turbulent kinetic energy production by buoyant μ_t turbulent viscosity $P_{r,saturation}$ saturation pressure at the surface temperature $\rho_{s,saturation}$ the saturation vapor density at the $P_{s,saturation}$ saturation pressure σ Stefan-Boltzmann constant q_i radiation flux vector σ_b constant coefficient $q_{s,conv}$ energy delivered to the structural surfaces by steam phase change σ_c constant coefficient $q_{s,conv}$ energy delivered to the structural surfaces by steam phase change δ_c chemical time scale R_{ewail} wall Reynolds number φ_{eff} effective thermal conductivity S_{cont} urbulent Schmidt number φ_{eff} turbulent thread conductivity S_{ct} urbulent Schmidt number <td>J_α∙A</td> <td>mass diffusion flux vector</td> <td>á</td> <td>thermal diffusivity of unburnt mixture</td>	J _α ∙A	mass diffusion flux vector	á	thermal diffusivity of unburnt mixture
$ \begin{array}{ccc} l_{t} & \mbox{turbulent length scale} & e & \mbox{dissipation rate of turbulent kinetic energy} \\ l_{ms} & \mbox{mean heam length} & e_{r,H_2O} & \mbox{grey medium total emissivity} \\ mbox{mean reaction progress variable} & \mbox{mean reaction reaction variable} & \mbox{mean reaction reaction variable} & \mbox{mean reaction reaction variable} & \mbox{mean reaction reaction} & \mbox{mean reaction} & mea$	k	thermal conductivity of the solid structure	α _r	absorption coefficient
$\begin{array}{l c c c } Import Im$	lt	turbulent length scale	ε	dissipation rate of turbulent kinetic energy
$\begin{array}{llllllllllllllllllllllllllllllllllll$	L _{ms}	mean beam length	ϵ_{r,H_2O}	grey medium total emissivity
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ḿs	wall condensation or vaporization rate	ξ	mean reaction progress variable
$\begin{array}{llllllllllllllllllllllllllllllllllll$	n_{H_2O}	steam mole fraction	Θ_m	mass transfer correct coefficient
$\begin{array}{cccc} P_{H_2O} & \mbox{water vapor partial pressure} & \lambda & \mbox{mean free path} \\ P_k & \mbox{turbulent kinetic energy production by viscous} & \mu_{eff} & \mbox{effective viscosity} \\ p_{kb} & \mbox{stresses} & \mu_l & \mbox{molecular viscosity} \\ forces & \mu_t & \mbox{turbulent viscosity} \\ p_{kc} & \mbox{turbulent kinetic energy production by buoyant} & \mu_t & \mbox{turbulent viscosity} \\ forces & \mu & \mbox{molecular viscosity} \\ p_{s,saturation} & \mbox{sturation pressure at the surface temperature} \\ p_{s,saturation} & \mbox{saturation pressure at the surface temperature} \\ p_{sat} & \mbox{saturation pressure} & \mbox{sturation pressure} \\ saturation pressure & \mbox{sturation pressure} & \mbox{sturation saturation pressure} \\ q_A & \mbox{internal energy flux vector} & \sigma_b & \mbox{constant coefficient} \\ q_{s,cond/vap} & \mbox{energy delivered to the structural surfaces by} & \mbox{ore to the structural surfaces by} & \mbox{steam phase change} & \mbox{ore term of convective heat transfer} \\ q_{s,cond/vap} & \mbox{et ratio} & \mbox{sures} & \mbox{mean free path} \\ R & \mbox{flex ratio} & \mbox{surese} & \mbox{ore term of convective heat transfer} \\ P_{s,laturation} & \mbox{surese} & \mbox{mean free path} \\ P_{s,laturation} & \mbox{surese} $	Pe	effective broadening pressure	κ	turbulent kinetic energy
P_k turbulent kinetic energy production by viscous μ_{eff} effective viscosity $stresses$ μ_l molecular viscosity P_{kb} turbulent kinetic energy production by buoyant μ_t turbulent viscosity P_{kb} turbulent kinetic energy production by buoyant μ_t turbulent viscosity Pr_t turbulent Prandtl number ρ_{H_2O} water vapor density in the gas mixture $p_{s,saturation}$ saturation pressure at the surface temperature $\rho_{s,saturation}$ the saturation water vapor density at the p_{sat} saturation pressure σ Stefan-Boltzmann constant q_i radiation flux vector σ_b constant coefficient $q_{s,cond/vap}$ energy delivered to the structural surfaces by steam phase change $\hat{\sigma}_s$ vall shear stress R flex ratio $\hat{\sigma}_s$ vall shear stress R flex ratio $\hat{\sigma}_t$ turbulent integral time scale R_{ewall} wall Reynolds number φ_{eff} effective thermal conductivity $S_{L,conv}$ source term of convective heat transfer φ_l thermal conductivity S_L iurbulent Schmidt number φ_t turbulent thermal conductivity S_L laminar flame speed φ_T rate factor for corrected heat-transfer coefficient.	P_{H_2O}	water vapor partial pressure	λ	mean free path
$\begin{array}{ c c c } & \mbox{stresses} & μ_l molecular viscosity \\ & multiple transfer of the structural surface of the structural surface subset of the structural subset of the structural subset of the structural subset of the str$	P_k	turbulent kinetic energy production by viscous	μ_{eff}	effective viscosity
P_{kb} turbulent kinetic energy production by buoyant forces μ_t turbulent viscosity P_{T_t} turbulent Prandtl number ρ_{H_2O} water vapor density in the gas mixture $p_{s,saturation}$ saturation pressure at the surface temperature p_{sat} ρ_{H_2O} water vapor density in the gas mixture p_{sat} saturation pressure σ Stefan-Boltzmann constant q_i radiation flux vector σ_b constant coefficient $q_{s,conv}$ energy delivered to the structural surfaces by steam phase change σ_c constant coefficient R_{ewall} flex ratioourset transfer ϕ_{eff} effective thermal conductivity $S_{L,conv}$ source term of convective heat transfer ϕ_l turbulent integral time scale R_{ewall} source term of internal energy ϕ_{eff} effective thermal conductivity S_L laminar flame speed ϕ_r rate factor for corrected heat-transfer coefficient.		stresses	μ_l	molecular viscosity
forces ν molecular kinetic viscosity Pr_t turbulent Prandtl number ρ_{H_2O} water vapor density in the gas mixture $p_{s,saturation}$ saturation pressure at the surface temperature $\rho_{s,saturation}$ the saturation water vapor density at the p_{sat} saturation pressure $\sigma_{s,saturation}$ Structural surface conditions q^A internal energy flux vector σ_{b} Stefan-Boltzmann constant q_i radiation flux vector σ_b constant coefficient $q_{s,conv}$ energy delivered to the structural surfaces by convection σ_e constant coefficient $q_{s,cond/vap}$ energy delivered to the structural surfaces by steam phase change δ_c chemical time scale R flex ratio σ_e constant coefficient R_{ewall} wall Reynolds number ϕ_{eff} effective thermal conductivity $S_{L,conv}$ source term of convective heat transfer ϕ_l thermal conductivity S_L source term of internal energy ϕ_T rate factor for corrected heat-transfer coefficient S_L laminar flame speed ϕ_T rate factor for corrected heat-transfer coefficient	P_{kb}	turbulent kinetic energy production by buoyant	μ_{t}	turbulent viscosity
Pr_t turbulent Prandtl number ρ_{H_2O} water vapor density in the gas mixture $p_{s,saturation}$ saturation pressure at the surface temperature $\rho_{s,saturation}$ the saturation water vapor density at the p_{sat} saturation pressure $\sigma_{s,saturation}$ the saturation water vapor density at the q_rA internal energy flux vector σ Stefan-Boltzmann constant q_i radiation flux vector σ_b constant coefficient $q_{s,conv}$ energy delivered to the structural surfaces by convection σ_e constant coefficient $q_{s,cond/vap}$ energy delivered to the structural surfaces by steam phase change δ_c chemical time scale R flex ratio σ_t turbulent integral time scale Re_{wall} wall Reynolds number φ_{eff} effective thermal conductivity $S_{I,conv}$ source term of convective heat transfer φ_l turbulent thermal conductivity S_I source term of internal energy ϕ_T rate factor for corrected heat-transfer coefficient. S_L laminar flame speed ϕ_T rate factor for corrected heat-transfer coefficient.		forces	ν	molecular kinetic viscosity
$p_{s,saturation}$ saturation pressure at the surface temperature $\rho_{s,saturation}$ the saturation water vapor density at the structural surface conditions p_{sat} saturation pressure σ Stefan-Boltzmann constant q_i radiation flux vector σ_b constant coefficient $q_{s,conv}$ energy delivered to the structural surfaces by convection σ_k constant coefficient $q_{s,cond/vap}$ energy delivered to the structural surfaces by steam phase change δ_c chemical time scale R flex ratio δ_t turbulent integral time scale Re_{wall} wall Reynolds number φ_{eff} effective thermal conductivity $S_{I,conv}$ source term of convective heat transfer φ_l turbulent thermal conductivity S_I source term of internal energy ϕ_T rate factor for corrected heat-transfer coefficient. S_L laminar flame speed ϕ_T rate factor for corrected heat-transfer coefficient	Prt	turbulent Prandtl number	$ ho_{ m H_2O}$	water vapor density in the gas mixture
$\begin{array}{llllllllllllllllllllllllllllllllllll$	p _{s,saturati}	ion saturation pressure at the surface temperature	$ ho_{ m s,saturatio}$	<i>m</i> the saturation water vapor density at the
$ \begin{array}{cccc} \mathbf{q} \cdot \mathbf{A} & \mbox{internal energy flux vector} & \sigma & \mbox{Stefan-Boltzmann constant} \\ \mathbf{q}_i & \mbox{radiation flux vector} & \sigma_b & \mbox{constant coefficient} \\ \mathbf{q}_{s,conv} & \mbox{energy delivered to the structural surfaces by} & \sigma_k & \mbox{constant coefficient} \\ \mbox{convection} & \sigma_e & \mbox{constant coefficient} \\ \mathbf{q}_{s,cond/vap} & \mbox{energy delivered to the structural surfaces by} & \hat{\sigma}_e & \mbox{constant coefficient} \\ \mathbf{q}_{s,cond/vap} & \mbox{energy delivered to the structural surfaces by} & \hat{\sigma}_e & \mbox{constant coefficient} \\ \mathbf{q}_{s,cond/vap} & \mbox{energy delivered to the structural surfaces by} & \hat{\sigma}_c & \mbox{chemical time scale} \\ \mbox{steam phase change} & \hat{\sigma}_s & \mbox{wall shear stress} \\ \mathbf{R} & \mbox{flex ratio} & \mbox{flex ratio} & \hat{\sigma}_t & \mbox{turbulent integral time scale} \\ \mbox{Rewall} & \mbox{wall Reynolds number} & \mbox{φ_{eff} & effective thermal conductivity} \\ \mbox{Sl}_{conv} & \mbox{source term of convective heat transfer} & \mbox{φ_l & \mbox{turbulent thermal conductivity} \\ \mbox{Sl}_t & \mbox{source term of internal energy} & \mbox{φ_t & \mbox{turbulent thermal conductivity} \\ \mbox{Sl}_L & \mbox{luminar flame speed} & \mbox{φ_T & \mbox{rate factor for corrected heat-transfer coefficient} \\ \end{tabular}$	$p_{\rm sat}$	saturation pressure		structural surface conditions
$ \begin{array}{ccc} q_{i} & \mbox{radiation flux vector} & \sigma_{b} & \mbox{constant coefficient} \\ q_{s,conv} & \mbox{energy delivered to the structural surfaces by} & \sigma_{k} & \mbox{constant coefficient} \\ convection & \sigma_{e} & \mbox{constant coefficient} \\ q_{s,cond/vap} & \mbox{energy delivered to the structural surfaces by} & \hat{\sigma}_{c} & \mbox{chemical time scale} \\ q_{s,cond/vap} & \mbox{energy delivered to the structural surfaces by} & \hat{\sigma}_{c} & \mbox{chemical time scale} \\ steam phase change & \hat{\sigma}_{s} & \mbox{wall shear stress} \\ R & \mbox{flex ratio} & \mbox{flex ratio} & \hat{\sigma}_{t} & \mbox{turbulent integral time scale} \\ Re_{wall} & \mbox{wall Reynolds number} & \mbox{g}_{eff} & \mbox{effective thermal conductivity} \\ S_{I,conv} & \mbox{source term of convective heat transfer} & \mbox{g}_{l} & \mbox{turbulent thermal conductivity} \\ S_{C} & \mbox{turbulent Schmidt number} & \mbox{g}_{t} & \mbox{turbulent thermal conductivity} \\ S_{I} & \mbox{source term of internal energy} & \mbox{g}_{T} & \mbox{rate factor for corrected heat-transfer coefficient} \\ S_{L} & \mbox{luminar flame speed} & \mbox{source term of internal energy} & \mbox{g}_{T} & source $	q∙A	internal energy flux vector	σ	Stefan–Boltzmann constant
$\begin{array}{llllllllllllllllllllllllllllllllllll$	q_i	radiation flux vector	σ_{b}	constant coefficient
$ \begin{array}{c} \mbox{convection} & \mbox{convection} & \mbox{seam} & \mbox{convection} & \mbox{seam} & \mbox{seam} & \mbox{phase} & \mbox{change} & \mbox{seam} & \mbox{phase} & \mbox{change} & \mbox{seam} & \mbox{phase} & \mbox{change} & \mbox{seam} & sea$	q _{s,conv}	energy delivered to the structural surfaces by	σ_k	constant coefficient
$\begin{array}{ll} q_{s,cond/vap} & \text{energy delivered to the structural surfaces by} & \hat{o}_c & \text{chemical time scale} \\ & \text{steam phase change} & \hat{o}_s & \text{wall shear stress} \\ \hline R & \text{flex ratio} & \hat{o}_t & \text{turbulent integral time scale} \\ \hline Re_{wall} & \text{wall Reynolds number} & \varphi_{eff} & \text{effective thermal conductivity} \\ \hline S_{I,conv} & \text{source term of convective heat transfer} & \varphi_l & \text{thermal conductivity} \\ \hline Sc_t & \text{turbulent Schmidt number} & \varphi_t & \text{turbulent thermal conductivity} \\ \hline S_I & \text{source term of internal energy} & \varphi_T & \text{rate factor for corrected heat-transfer coefficient.} \\ \hline S_L & \text{laminar flame speed} \end{array}$		convection	σ_{ϵ}	constant coefficient
steam phase change \hat{o}_s wall shear stressRflex ratio \hat{o}_t turbulent integral time scaleRewallwall Reynolds number φ_{eff} effective thermal conductivity $S_{I,conv}$ source term of convective heat transfer φ_l thermal conductivity S_t turbulent Schmidt number φ_t turbulent thermal conductivity S_I source term of internal energy ϕ_T rate factor for corrected heat-transfer coefficient. S_L laminar flame speed φ_T source term of internal energy	q _{s,cond/vaj}	energy delivered to the structural surfaces by	Ôc	chemical time scale
Rflex ratio \hat{o}_t turbulent integral time scaleRe wallwall Reynolds number φ_{eff} effective thermal conductivity $S_{I,conv}$ source term of convective heat transfer φ_l thermal conductivity S_t turbulent Schmidt number φ_t turbulent thermal conductivity S_I source term of internal energy ϕ_T rate factor for corrected heat-transfer coefficient. S_L laminar flame speed U U		steam phase change	Ôs	wall shear stress
Rewallwall Reynolds number φ_{eff} effective thermal conductivity $S_{I,conv}$ source term of convective heat transfer φ_l thermal conductivity S_{C_t} turbulent Schmidt number φ_t turbulent thermal conductivity S_I source term of internal energy ϕ_T rate factor for corrected heat-transfer coefficient. S_L laminar flame speed φ_T rate factor for corrected heat-transfer coefficient.	R	flex ratio	ôt	turbulent integral time scale
$ \begin{array}{ll} S_{I,conv} & \text{source term of convective heat transfer} & \varphi_l & \text{thermal conductivity} \\ Sc_t & \text{turbulent Schmidt number} & \varphi_t & \text{turbulent thermal conductivity} \\ S_I & \text{source term of internal energy} & \phi_T & \text{rate factor for corrected heat-transfer coefficient.} \\ S_L & \text{laminar flame speed} & \end{array} $	Re _{wall}	wall Reynolds number	φ_{eff}	effective thermal conductivity
Sc_tturbulent Schmidt number φ_t turbulent thermal conductivityS_Isource term of internal energy ϕ_T rate factor for corrected heat-transfer coefficient.S_Llaminar flame speed	S _{I,conv}	source term of convective heat transfer	φ_l	thermal conductivity
S_I source term of internal energy ϕ_T rate factor for corrected heat-transfer coefficient. S_L laminar flame speed	Sct	turbulent Schmidt number	φ_{t}	turbulent thermal conductivity
S _L laminar flame speed	SI	source term of internal energy	ϕ_{T}	rate factor for corrected heat-transfer coefficient.
	SL	laminar flame speed		

Introduction

Hydrogen safety analysis has become one of the important tasks for nuclear safety engineers especially after the energetic hydrogen explosions occurred at the nuclear power plants at Fukushima Daiichi in 2011. Complex physical phenomena are involved in the nuclear reactor containment during the severe accident, such as flashing of water, turbulent flow, convection heat transfer, radiation heat transfer, steam condensation and evaporation, heat conduction in solid structure, hydrogen deflagration and detonation, Download English Version:

https://daneshyari.com/en/article/1269227

Download Persian Version:

https://daneshyari.com/article/1269227

Daneshyari.com