
A simple model of ultrasound propagation in a cavitating liquid.
Part I: Theory, nonlinear attenuation and traveling wave generation

O. Louisnard
Centre RAPSODEE, FRE CNRS 3213, Université de Toulouse, Ecole des Mines d’Albi, 81013 Albi Cedex 09, France

a r t i c l e i n f o

Article history:
Received 27 December 2010
Received in revised form 14 June 2011
Accepted 16 June 2011
Available online 25 June 2011

Keywords:
Acoustic cavitation
Bubble dynamics
Propagation in bubbly liquids
Wave attenuation

a b s t r a c t

The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct
estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dis-
sipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid.
Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to
be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the
predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equa-
tions describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conve-
niently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation,
where the imaginary part of the squared wave number is directly correlated with the energy lost by a
single bubble. For low acoustic driving, linear theory is recovered, but for larger drivings, namely above
the Blake threshold, the attenuation coefficient is found to be more than 3 orders of magnitude larger
then the linear prediction. A huge attenuation of the wave is thus expected in regions where inertial bub-
bles are present, which is confirmed by numerical simulations of the nonlinear Helmholtz equation in a
1D standing wave configuration. The expected strong attenuation is not only observed but furthermore,
the examination of the phase between the pressure field and its gradient clearly demonstrates that a trav-
eling wave appears in the medium.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The complexity and large variety of spatial and temporal scales
involved in acoustic cavitation make difficult the derivation of a
full theoretical model, accounting for the coupled effects between
the bubble field and the sound field. Nevertheless, considerable
progress has been made in the last decade. Theoretical studies in
the context of single bubble sonoluminescence have allowed to re-
strict the ambient size of the bubbles in the micron range, owing to
surface instabilities [1–7]. This has been confirmed by 20 kHz
experiments, both in single bubble [8] and multi-bubble configura-
tions (see Ref. [9] and references therein).

Besides, a large collection of experimental observations have re-
vealed that radially oscillating bubbles in high-intensity acoustic
fields tend to self-organize into bubble structures, which shapes
depend on the experimental configuration, with possibly two
structures or more appearing simultaneously in different zones
of the liquid [10–13,9]. The shape of such structures is strongly
correlated with the fundamental issue of the translational motion
of the bubbles under Bjerknes forces, which have been reconsid-

ered in the context of strongly nonlinear inertial radial oscillations
and traveling waves [14,15,7].

On this basis, the action of the acoustic field on the organization
of inertial bubbles has been satisfactorily described in various con-
figurations by particle models [16,10,13,7], by calculating the
forces exerted on the bubbles directly from their nonlinear dynam-
ics. Assuming a simple shape of the sound field, some bubble struc-
tures have been remarkably caught by this method. However, the
correct prediction of other structures was found to be more diffi-
cult, mainly because, as suggested by Mettin [9], the local sound
field might have a complicated shape, which cannot be inferred
without describing correctly the acoustic field in the medium.

The backward effect of inertial bubbles on the propagation of
acoustic waves remains mainly unexplored. The main physical ef-
fects of the bubble radial oscillations on sound waves can be easily
understood qualitatively. Bubbles are mechanical oscillators so
that wave dispersion is expected. They oscillate non linearly for
large amplitude drivings, so that waves should be nonlinear. Final-
ly, they dissipate mechanical energy by various processes, which
should produce wave attenuation. The problem has been attacked
in the early work of Foldy [17] who considered linear scattering of
waves by an arbitrary statistical distribution of scatterers, and ob-
tained a linear dispersion relation. The application of this theory to
the specific case of linear sound waves in bubbly liquids has been
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considered in Refs. [18,19]. A key feature in Foldy’s approach is that
for a sufficiently dilute bubbly mixture, each bubble behaves as if it
were excited by the statistical average pressure field, which allows
to cast aside the difficult issue of bubbles pairwise interaction. An
intuitive justification of this approach can be found in Refs. [20,21].

The assumption of small amplitude waves has been relaxed by
Iordansky [22] and simultaneously by van Wijngaarden [23,24] by
a semi-empirical volume-averaging of the bubbly liquid equations,
which is closed by a Rayleigh equation, where, as suggested by Fol-
dy’s work, the driving pressure term is the local average pressure
field. The model obtained has allowed the study of nonlinear
dispersive waves. The latter are classically described by the
Korteweg–de Vries equation [25], and the reduction of van Wijnga-
arden model to the latter for moderate amplitudes has been stud-
ied by various authors both theoretically [24,26–28] and
experimentally [29–31].

The popular Caflish model [32] is a rigorous generalization of
Foldy’s theory to the nonlinear case and yields a simplified version
of van Wijngaarden model, as far as the bubbly liquid is dilute en-
ough. The latter hypothesis has the important corollary that the
mean velocity of the mixture is infinitely small, so that the
momentum conservation equation coincide with the one of linear
acoustics [see Eq. (2)]. A physical discussion of the latter feature
can be found in Refs. [20,21].

Under the linear approximation, the Caflish model reduces to
the famous dispersion relation of Foldy, which can be extended
to calculate a wave attenuation coefficient, accounting for dissipa-
tion by a linearly oscillating bubble [20] and to polydisperse bub-
bles size distributions. Linearization allows a simple description of
the sound field by an Helmholtz equation, and has been used in
studies of the coupling between wave propagation and the bubble
field. The gain obtained by simplifying the wave equation allows a
complex description of its coupling with the bubble population
evolution, spatially and along the size axis. Following such an ap-
proach, Kobelev and Ostrovski [33] have proposed an elegant mod-
el of self-action of low amplitude sound waves in bubbly liquids,
accounting for the bubble drift under the action of primary Bjerk-
nes forces and bubble coalescence favored by secondary Bjerknes
forces. Although the wave equation in this study was linear, the
global model was nonlinear, owing to the dependence of the wave
number on the varying bubble density, which conversely evolves
non linearly with the sound field. Specific solutions under different
hypothesis could catch the experimentally observed self-transpar-
ency, self-focusing of sound waves in bubbly liquids, and destabi-
lization of homogeneous bubble distributions. The latter instability
has also been demonstrated in Ref. [34] by a similar approach, but
involving a slightly different physics.

The attenuation of sound waves by oscillating bubbles remains
normally weak for linear waves, except when the bubbles are close
to the resonant size [17,35,20], which is the main cause of sound
extinction considered in Ref. [33]. Since low-frequency inertial cav-
itation involves bubbles much smaller than the resonant size [9],
the use of the linear theory of Ref. [20] predicts an abnormally
low attenuation, compared to experimental data [36]. This is not
astonishing since inertial bubbles typically suffer a 10-fold expan-
sion of their radius and are expected to dissipate more energy than
predicted by linear theory. Despite the latter restriction, the linear
dispersion relation has often been used to predict attenuation of
strong cavitation fields, because it allows the description of the
problem by a linear Helmholtz equation, which is easy to solve,
and allows harmonic response simulations [37–40]. Moreover,
the use of a complex wave number provided by the linear disper-
sion relation in an Helmholtz equation somewhat masks the fact
that one physical origin of wave attenuation by the bubbles is
the energy dissipated by the latter. The latter point has been nicely
addressed by Rozenberg [41], who restated the problem of attenu-

ation of a traveling wave by a cavitation zone in terms of energy
conservation, without resorting to the linear hypothesis. The latter
study made use of an empirical expression, fitted on experimental
results, between the power dissipated by cavitation bubbles and
the wave intensity. Doing so, realistic attenuated intensity profiles
near the emitter could be calculated simply, and experimentally
observed self-attenuation of the wave could be accounted for.

The last remarks suggests that the relaxation of the linear
hypothesis is necessary to correctly predict attenuation by inertial
bubbles, so that one should revert to the original fully nonlinear
form of the Caflish model. However, although valid for any wave
amplitude, the latter remains intractable for large multi-dimen-
sional geometries, since it requires time-dependent simulations,
and presents convergence problems in the range of inertial cavita-
tion, even in 1D [42,43]. Thus, an intermediate model, simple en-
ough to be numerically tractable, but properly accounting for the
true energy dissipation by inertial bubbles, is necessary.

The motivation of this work is the derivation of such a reduced
model, and can be viewed as a systematic formalization of Rozen-
berg’s approach [41], based on the nonlinear Caflish model. The
present paper extends the ideas formerly presented in Ref. [44]
and is organized as follows. In Section 2, we recast the fully nonlin-
ear Caflish equations into a mechanical energy balance equation,
where we express explicitly the energy lost by the bubbly liquid
on average over an oscillation period, as functions of period-aver-
aged quantities of a single bubble dynamics. This energy loss is
then computed numerically, by simulating a bubble radial dynam-
ics equation over a typical parameter range, including the range of
inertial cavitation involved in cavitation and sonochemistry exper-
iments. In Section 3, we then seek a reduction of the Caflish equa-
tions for the main harmonic component of the acoustic field,
involving the energy dissipation calculated in Section 2. Finally,
in Section 4, the resulting nonlinear Helmholtz equation is solved
numerically in a 1D configuration, and a detailed analysis of the
obtained wave profiles is performed. The implications of the pres-
ent results on the primary Bjerknes forces and 2D simulations of
classical experimental configurations are deferred in a companion
paper.

2. Theory

2.1. Caflish equations

The Caflish model [32] describes the propagation of an acoustic
wave of arbitrary amplitude in a bubbly liquid described as a con-
tinuum, which means that the radial oscillations of all the bubbles
pertaining to an elementary small volume of mixture located at a
spatial point r can be described by a continuous spatio-temporal
radius function Rðr; tÞ. The first two equations of the model corre-
spond to mass and momentum conservation in the mixture:
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In the above equations, pðr; tÞ is the acoustic pressure field, vðr; tÞ
the velocity field, ql the liquid density, cl the sound speed in the li-
quid, and bðr; tÞ is the instantaneous void-fraction, which, assuming
a mono-disperse distribution of the bubbles, can be defined by:

bðr; tÞ ¼ NðrÞ4
3
pRðr; tÞ3; ð3Þ

where NðrÞ is the local bubble density. The latter is assumed time-
independent, or at least almost constant on the time scale of the
oscillations. Despite the set of Eqs. (1) and (2) is very similar to
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