

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Effect of a neutral fluorinated network on the properties of a perfluorosulfonic acid ionomer as proton exchange membrane

Adrien Guimet ^{*a*,*b*}, Linda Chikh ^{*a*}, Arnaud Morin ^{*b*}, Odile Fichet ^{*a*,*}

^a Laboratoire de Physicochimie des Polymères et des Interfaces, Institut des Matériaux, Université de Cergy-Pontoise, 5 mail Gay Lussac, 95031 Cergy-Pontoise Cedex, France

^b Laboratoire des Composants PEM, CEA Grenoble, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France

ARTICLE INFO

Article history: Received 29 January 2016 Received in revised form 27 May 2016 Accepted 27 May 2016 Available online 20 June 2016

Keywords:

Perfluorosulfonic acid ionomer Semi-interpenetrating polymer network Fluorinated network PEMFC

ABSTRACT

Proton and water transport properties as well as water sorption, thermomechanical properties, and morphology of a new series of semi-Interpenetrating Polymer Network (semi-IPN) combining perfluorosulfonated ionomer (Aquivion[®]) with a neutral fluorinated network of composition ranging between 10 and 50 wt% have been studied. When less than 20 wt% of neutral fluorinated network are included, water and proton transport properties of semi-IPNs are enhanced compared to that of Aquivion[®], despite of their decrease of ion exchange capacity and their capacity to absorb water. Thermal and chemical stabilities are maintained very close to those of Aquivion[®]. In addition, these new materials show similar performances in fuel cell operation at 105 °C compared to those of Aquivion[®]. That evidences that perfluorosulfonated ionomer can be strengthened by association with a neutral fluorinated network.

© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

At the present, the most advanced membranes in Proton Exchange Membrane Fuel Cells (PEMFCs), commercially available or incorporated into demonstrators, integrate a perfluorosulfonated acid ionomer (PFSA) as polymer electrolyte. Thus, perfluorosulfonic acid polymer named Nafion[®] is the reference membrane because of its high water and proton transport properties as well as high chemical, thermal and mechanical stabilities. However, Nafion[®], as well as other PFSA, is not suitable for operating at temperature higher than 100 °C. A main reason is the difficulty in maintaining a homogeneous and adequate hydration rate in the membrane above this temperature when operating in fuel cell [1,2]. Dehydration results in the decrease of the proton conductivity and therefore a decrease in fuel cell performance. Another reason is the loss of its mechanical properties with increasing temperature [3–8] from its mechanical relaxation temperature followed by creep chains beyond this temperature. Finally, the gas permeability of Nafion[®] increases with temperature, so reducing also its performances.

Thus, a means of improving the properties of Nafion[®] is to combine it with another polymer having the required property. These polymer combinations can be made in various ways such as the semi-Interpenetrating Polymer Network

* Corresponding author.

E-mail address: odile.fichet@u-cergy.fr (O. Fichet).

http://dx.doi.org/10.1016/j.ijhydene.2016.05.240

0360-3199/© 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

(semi-IPN) architecture [9] where a linear polymer is entangled in the cross-linked host matrix. Thus, the immobilization of a polyelectrolyte through a network should avoid its high temperature creep.

To our best knowledge, only Nafion[®] has been included as linear PFSA in semi-IPN, and the main aim is to reduce the Nafion[®] methanol permeability in order to improve the Direct Methanol Fuel Cell (DMFC) performances. The various networks associated with Nafion[®] are from three types. First, hydrocarbon polyelectrolyte networks have been investigated. Among them, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) network seems to be the best [10-14]. Indeed, the DMFC performances are at least equal to that of Nafion[®] when more than 60 wt% of AMPS are introduced in the Nafion[®]/AMPS semi-IPN and the methanol permeability of these semi-IPNs is similar to that of Nafion[®]. By contrast, the performances of a DMFC operating with a semi-IPN made of a poly (styrene sulfonate) network is significantly lower than those obtained with Nafion® [15]. Thereby, associate a polyelectrolyte network with Nafion® does not seem to lead to reduce its sensitivity to aging and swelling-deswelling cycles in DMFC.

Second, Nafion[®] has also been associated to a neutral hydrocarbon network such as, for example, a poly (vinylpyrrolidone) (PVP) network [16]. The advantage of this polymer type is its compatibility with Nafion[®] due to the establishment of ionic bonds between their amino groups and the sulfonic acid functions of Nafion[®], as that is also observed with networks based on poly (benzimidazole-co-Nvinylimidazole) [17]. These interactions limit the phase separation between the polymers whose characteristic size is less than 100 nm according to the SEM images. The Young modulus of these semi-IPNs is higher and simultaneously their methanol permeability is lower compared to that of Nafion[®]. According to our knowledge, only one article reports PEMFC tests with a membrane associating Nafion[®] with 3 mol% of a divinylbenzene-based network (DVB) [18]. This Nafion[®]/DVB semi-IPN has been evaluated in a fuel cell at 80 °C, 60% relative humidity (RH) and under H₂/O₂. The current density at 0.4 V is equal to 1 A/cm² which is still substantially lower than that measured with Nafion® (2.2 A/ cm²). Finally, it is also noted that most of semi-IPNs listed until now have been synthesized by impregnating a Nafion® membrane into a solution of the partner network monomers which are then polymerized.

Finally, Nafion[®] has also been associated with fluorinated neutral networks. Its combination with a network based on poly (vinylidene fluoride) (PVDF) [19,20] causes the decrease of the water uptake at 80 °C from 19 to 10 wt% for Nafion[®] and Nafion[®]/PVDF (60/40) semi-IPN, respectively and to 6 wt% for the (20/80) composition. Simultaneously, proton conductivity decreases from 5×10^{-2} S/cm for Nafion[®] to 5×10^{-3} and 10^{-3} S/cm for these same semi-IPNs. This is consistent with the decrease of the ion exchange capacity (IEC) of the semi-IPNs from 0.91 mmol/g for Nafion[®] to 0.19 mmol/g for Nafion[®]/PVDF (20/80) semi-IPN as the PVDF ratio increases. However, the addition of PVDF increases the Young's modulus from 10 for Nafion[®] to respectively 16.5 and 25 MPa, for the Nafion[®]/PVDF (60/40) and (20/80) semi-IPNs. Finally, these materials were tested in H₂/Air fuel cell at different

temperatures, at 100% RH. The current densities are lower than those obtained with Nafion[®]. For example, at 80 °C, the current density at 0.4 V is 0.9 A/cm² with the Nafion[®]/PVDF (80/20) semi-IPN against 1.2 A/cm² with Nafion[®]. Other polymers derived from fluorinated aromatic polyimides (FPI) [21-25] or fluorinated polybenzimidazole (PBI) [26] have also been used as the host neutral network. As previously, a decrease of water uptake and conductivity is systematically observed for semi-IPNs compared to those of Nafion[®]. However, the presence of these networks improves the mechanical properties at room temperature. On the one hand, the tensile strength of Nafion® (27 MPa) is almost tripled up to 80 MPa for the Nafion[®]/FPI (10/90) semi-IPN. On the other hand, its storage modulus at 50 °C (E' = 55 MPa) is almost 4 times higher (E' = 220 MPa) for Nafion[®]/FPI (80/20) semi-IPN. Thus, for all of these semi-IPNs compared to Nafion[®], water uptake, ion exchange capacity and conductivity simultaneously decrease when the amount of neutral network increases whereas the mechanical properties are systematically improved.

To summarize, include Nafion[®] in a semi-IPN architecture allows improving its mechanical properties, reducing its methanol permeability and water uptake, which should consequently lead to better dimensional stability. It turns out that fluorinated polymer-based networks, in spite of their ionic neutrality, seem to be the best partners to PFSA for PEMFC application since proton conductivity of semi-IPN remains high enough (above 10⁻³ S/cm). In addition, fluorinated polymers have better compatibility with Nafion[®] compared to hydrocarbon polymers. However, the fuel cell performances with these materials are lower than those obtained with single Nafion[®]. Among them, performances of PVDF-based semi-IPNs are the closest of those of Nafion[®]. However, PVDF contains 48 wt% fluorine while the other FPI and PBI fluoropolymers associated with Nafion contain only between 25 and 27 wt% fluorine. Thus, a key parameter to obtain better fuel cell performances is perhaps to increase the fluorine content in the partner network.

In our work, we have associated another PFSA than Nafion[®], i.e. Aquivion[®] in a semi-IPN architecture in order to increase the fluorine content in the final material. This pathway leads to a decrease of ionomer proportion and so perhaps to that of the transport properties. However, the semi-IPN architecture should modify the morphology of the hydrophobic and hydrophilic domains due to a better compatibility between these both phases. The behavior of the Aquivion should be improved for the low water amounts, i. e at temperature above 80 °C. We made also the choice to work with Aquivion[®] as PFSA instead of Nafion[®] because Aquivion[®] has a higher relaxation temperature (127 against 67 °C) [27].

The neutral fluorinated polymer network has been synthesized from Fluorolink[®] MD 700, commercial oligomer containing the highest fluorine content (62 wt%) we found. Ion exchange capacity, and water and proton transport properties of these new semi-IPNs combining Aquivion[®] and Fluorolink[®] MD 700 were characterized. The mechanical properties and the thermal and chemical stabilities were also studied. Finally, these Aquivion[®]/FMD semi-IPNs have been tested in PEMFC at different temperatures up to 105 °C. Download English Version:

https://daneshyari.com/en/article/1270435

Download Persian Version:

https://daneshyari.com/article/1270435

Daneshyari.com