

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

HYDROGEN

A highly dispersible, magnetically separable and environmentally friendly nano-sized catalyst for water oxidation

Mohammad Mahdi Najafpour ^{a,b,*}, Saeideh Salimi ^a, Małgorzata Hołyńska ^c, Suleyman I. Allakhverdiev ^{d,e,f}

^a Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

^b Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

^c Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße, D-35032 Marburg, Germany

^d Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences,

Botanicheskaya Street 35, Moscow 127276, Russia

^e Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia ^f Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia

ARTICLE INFO

Article history: Received 26 July 2015 Received in revised form 29 December 2015 Accepted 12 January 2016 Available online 4 February 2016

Keywords: Artificial photosynthesis Heterogeneous catalyst Manganese oxide Water oxidation

ABSTRACT

The reaction of KMnO₄ with cobalt nanoparticles coated with SiO₂ layers forms a highly dispersible, magnetically separable and environmentally friendly catalyst toward water oxidation. The compound was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, X-ray Photoelectron Spectroscopy, X-ray diffraction, electron spectroscopy, Fourier transform infrared spectroscopy and atomic absorption spectroscopy. The nano-sized catalyst shows self-healing in the presence of cerium(IV) ammonium nitrate and under the water-oxidation conditions. The turnover frequencies for the catalyst toward water oxidation in the presence of cerium(IV) ammonium nitrate and 0.25 (mmol O₂/mol Mn · s), respectively. Copyright © 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

The water splitting to hydrogen and oxygen is an important reaction in artificial photosynthesis to employ sustainable


energies. As water oxidation is a bottleneck for water splitting, the finding of an efficient, cheap and environmentally friendly water-oxidizing compound is necessary [1-3]. Among different compounds [4-12], Mn oxides are very promising and interesting because they are not only cheap and

E-mail address: mmnajafpour@iasbs.ac.ir (M.M. Najafpour).

http://dx.doi.org/10.1016/j.ijhydene.2016.01.056

0360-3199/Copyright © 2016, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. Tel.: +98 24 3315 3201.

environmentally friendly, but also a similar structure is efficiently used by plants, algae and cyanobacteria for the same reaction [13–28].

Oxygen evolution catalyzed by MnO₂ in the presence of cerium(IV) salts as oxidants was reported by Glikman and Shcheglova in 1968 for the first time [29]. Shilov used the catalyst to test water oxidation in the presence of other oxidants [30]. Morita in 1979 considered electrochemical water oxidation catalyzed by Mn oxides and the important role of Mn(III) was reported [31]. Harriman in 1988 extended this work

to different metal oxides in the presence of ammonium cerium(IV) nitrate (Ce(IV)) [32].

Nanostructured Mn oxide clusters supported on mesoporous silica were reported as efficient catalysts for water oxidation in the presence of $\text{Ru}(\text{bpy})_3^{2+}$ [33]. It is proposed that Si–O groups are important for proton transfer and as stabilizers of Mn oxide [33]. Mn oxides supported on zeolites were reported as efficient catalysts toward water oxidation in the presence of Ce(IV) [34]. However, very small particles are leaking from zeolite in the presence of

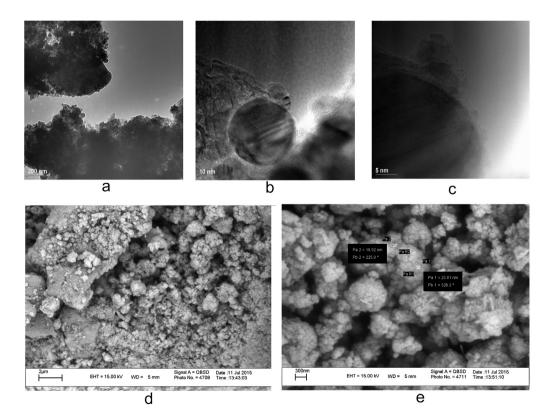


Fig. 1 – TEM (a-c) and SEM (d,e) images for 1.

Download English Version:

https://daneshyari.com/en/article/1271149

Download Persian Version:

https://daneshyari.com/article/1271149

Daneshyari.com