

On-board and Off-board performance of hydrogen storage options for light-duty vehicles

R.K. Ahluwalia*, T.Q. Hua, J.K. Peng

Argonne National Laboratory, Argonne, IL 60439, USA

ARTICLE INFO

Article history: Received 19 November 2010 Received in revised form 4 April 2011 Accepted 6 May 2011 Available online 15 June 2011

Keywords: Hydrogen storage Compressed hydrogen Liquid hydrogen Metal hydride storage Sorption Hydrogen carriers

ABSTRACT

Leading physical and materials-based hydrogen storage options are evaluated for their potential to meet the vehicular targets for gravimetric and volumetric capacity, cost, efficiency, durability and operability, fuel purity, and environmental health and safety. Our analyses show that hydrogen stored as a compressed gas at 350–700 bar in Type III or Type IV tanks cannot meet the near-term volumetric target of 28 g/L. The problems of dormancy and hydrogen loss with conventional liquid H_2 storage can be mitigated by deploying pressure-bearing insulated tanks. Alane (AlH₃) is an attractive hydrogen carrier if it can be prepared and used as a slurry with >50% solids loading and an appropriate volumeexchange tank is developed. Regenerating AlH₃ is a major problem, however, since it is metastable and it cannot be directly formed by reacting the spent Al with H_2 . We have evaluated two sorption-based hydrogen storage systems, one using AX-21, a high surfacearea superactivated carbon, and the other using MOF-177, a metal-organic framework material. Releasing hydrogen by hydrolysis of sodium borohydride presents difficult chemical, thermal and water management issues, and regenerating NaBH₄ by converting B-O bonds is energy intensive. We have evaluated the option of using organic liquid carriers, such as n-ethylcarbazole, which can be dehydrogenated thermolytically on-board a vehicle and rehydrogenated efficiently in a central plant by established methods and processes. While ammonia borane has a high hydrogen content, a solvent that keeps it in a liquid state needs to be found, and developing an AB regeneration scheme that is practical, economical and efficient remains a major challenge.

Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A number of physical and materials-based hydrogen storage options are being developed to meet simultaneously the vehicular targets for gravimetric and volumetric capacity, cost, efficiency, durability and operability, fuel purity, and environmental health and safety. In this paper, we review the performance characteristics of the currently available physical, metal hydride (MH), sorption, and chemical hydrogen storage methods and assess them for their potential to meet these targets.

Table 1 lists the various storage options examined in this work. The list does not necessarily include all the candidate options, only the ones that we have evaluated to-date. Compressed hydrogen storage at 350–700 bar in Type III (metal-lined) and Type IV (polymer lined) vessels has been demonstrated in a number of prototype fuel cell vehicles.

^{*} Corresponding author.

E-mail address: walia@anl.gov (R.K. Ahluwalia).

^{0360-3199/\$ –} see front matter Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.ijhydene.2011.05.040

Storage Options	On-Board Storage			Production, Delivery, and	Refueling Station
	Peak P	Peak T	ΔH	Regeneration Infrastruture	
	bar	K	kJ/mol-H ₂		
Physical Storage					
Compressed Hydrogen	350-700	300	NM	SMR, Compressors, Pipeline Delivery	Tube Banks, Compressors
Liquid Hydrogen	6—8	20	NM	SMR, Liquefiers, Trucks	LH ₂ Storage
Cryo-compressed Hydrogen	50-300	20-50	NM	SMR, Liquefiers, Trucks	LH ₂ Storage, Liquid H ₂ Pumps
Metal Hydride Storage					
Sodium Alanate	100	423-453	37-47	SMR, Compressors, Pipeline Delivery	Tube Banks, Compressors, Chillers
Alane	10-50	423–523	7	SMR, Two-way delivery, Central Regeneration	Fresh and Spent Fuel Storage
Sorption Storage					
AX-21	50-300	77-120	3–6	SMR, Liquefiers, Trucks	LH ₂ Storage, Liquid H ₂ Pumps
MOF-177	50-250	77-120	2-5	SMR, Liquefiers, Trucks	LH ₂ Storage, Liquid H ₂ Pumps
Chemical Hydrogen Storage					
Sodium Borohydride	10-50	423–523	53–63	SMR, Two-way Delivery, Central Regeneration	Fresh and Spent Fuel Storage
N-ethylcarbazole	10-50	423–523	51	SMR, Two-way Delivery, Central Regeneration	Fresh and Spent Fuel Storage
Ammonia Borane	10—50	423–523	20-33	SMR, Two-way Delivery, Central Regeneration	Fresh and Spent Fuel Storage

Table 1 - Important attributes of physical and material-based storage systems analyzed in the present study.

Compressed hydrogen storage in carbon fiber (CF) wound pressure vessels is well understood, as is the inherent shortcoming that since the density of hydrogen is 39 g/L at 700 bar, this option cannot possibly meet the intermediate (2015) system-level target of 40 g/L, after including the volume of the hardware in the system. Although demonstration vehicles have also been built with liquid hydrogen (LH₂) tanks, the interest in LH₂ storage has subsided because of the energy inefficiency incurred in H₂ liquefaction and an unavoidable loss of H₂ during extended parking, even from tanks with cryogenic multi-layer vacuum insulation (MLVI).

The problem of dormancy and H_2 loss from LH_2 storage tanks can be overcome by using insulated pressure vessels, i.e., cryo-compressed hydrogen storage (CcH₂). Aceves et al. [1,2] have built three generations of CcH₂ tanks to demonstrate the advantages of CcH₂ systems over compressed and liquid hydrogen systems.

For hydrogen storage in metal hydride (MH) systems, much attention has been focused on sodium alanates as hydrogen storage materials starting with the discovery that they can be made reversible by doping with Ti catalysts [3]. Researchers continue to use NaAlH₄ as a surrogate material in their studies on engineering of MH systems, while recognizing that this material may not be a long-term solution for automotive storage systems [4,5]. Alane (aluminum hydride, AlH₃) is another metal hydride that has many interesting properties as a potential hydrogen storage material [6,7]. It is a covalently bonded, binary hydride that can exist in several phases, all of which are thermodynamically unstable, but kinetically metastable at room temperature because of their slow decomposition rates. It contains 10.1-wt% hydrogen and has the desired attribute of low heat of formation (Δ H). However, the Gibbs free energy of formation of the stable phase (α-AlH₃) at 298 K is 48.5 kJ/mol, making it impractical to regenerate AlH₃ from spent Al with gaseous H₂ on-board a vehicle.

Lightweight, porous, high surface-area sorbents, to which hydrogen bonds only weakly, are being investigated as potential storage materials. In general, the storage capacities of such materials, including the recently developed metalorganic frameworks [8,9], are less than 2 wt% at room temperatures. It is well known that physisorption can be significantly enhanced by operating at cryogenic temperatures [10,11]. Superactivated carbon AX-21 has shown excess adsorption of 5.4-wt% H₂ at liquid nitrogen temperature (77 K) and moderate pressure (<90 bar). MOF-177, Zn₄O(1,3,5benzenetribenzoate)2, has shown an even higher uptake at 77 K: 7.5-wt% of excess H_2 and 11.2-wt% of absolute H_2 at 70 bar [8]. In this overview, we assess the potential of meeting the gravimetric and volumetric capacity targets for on-board H₂ storage systems with cryo-adsorption on AX-21 and MOF-177 at moderate pressures (up to 350 bar but preferably <100 bar).

On-board storage capacity may be significantly enhanced with the use of hydrogen carriers that would be regenerated off-board (and may suffer an energy penalty in the process). Our overview includes three hydrogen carriers that are representative of the main classes of organic and inorganic chemical hydrides being investigated by the storage community. Sodium borohydride appears attractive as it can release 4 mol of hydrogen per mole of NaBH₄ through the hydrolysis reaction [12]. Some of the disadvantages are that NaBH₄ needs to be carried as a solution with an alkaline additive for stabilization; the hydrolysis reaction is highly exothermic and requires difficult thermal and water management; and converting the product B–O bonds to B–H is energy intensive. N-ethylcarbazole represents a class of liquid organic carriers that can release hydrogen by thermolytic decomposition over a catalyst, and be rehydrogenated off-board by established industrial methods [13]. The challenge has been to find suitable organic carriers that have sufficient hydrogen capacity, optimal ΔH , rapid decomposition kinetics and that remain liquid over the working temperature range. Finally, ammonia

Download English Version:

https://daneshyari.com/en/article/1271716

Download Persian Version:

https://daneshyari.com/article/1271716

Daneshyari.com