

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Experimental performance evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation

Steven Chiuta^{*a,b,**}, Raymond C. Everson^{*a,b*}, Hein W.J.P. Neomagus^{*a,b*}, Dmitri G. Bessarabov^{*a,**}

^a HySA Infrastructure Centre of Competence, North-West University, Faculty of Engineering, Private Bag X6001, Potchefstroom Campus, 2520, South Africa ^b School of Chemical and Minerals Engineering, North-West University, Faculty of Engineering, Private Bag X6001,

Potchefstroom Campus, 2520, South Africa

ARTICLE INFO

Article history: Received 16 December 2013 Accepted 28 February 2014 Available online 4 April 2014

Keywords: Ammonia decomposition Microchannel reactor Hydrogen generation Fuel cells Performance evaluation

ABSTRACT

Microchannel reactors appear attractive as integral parts of fuel processors to generate hydrogen (H₂) for portable and distributed fuel cell applications. The work described in this paper evaluates, characterizes, and demonstrates miniaturized H₂ production in a standalone ammonia-fuelled microchannel reformer. The performance of the microchannel reformer is investigated as a function of reaction temperature (450–700 °C) and gas-hourly-space-velocity (6520–32,600 Nml g_{cat}^{-1} h⁻¹). The reformer operated in a daily start-up and shut-down (DSS)-like mode for a total 750 h comprising of 125 cycles, all to mimic frequent intermittent operation envisaged for fuel cell systems. The reformer exhibited remarkable operation demonstrating 98.7% NH₃ conversion at 32,600 Nml g_{cat}^{-1} h⁻¹ and 700 °C to generate an estimated fuel cell power output of 5.7 W_e and power density of 16 kW_e L⁻¹ (based on effective reactor volume). At the same time, reformer operation yielded low pressure drop (<10 Pa mm⁻¹) for all conditions considered. Overall, the microchannel reformer performed sufficiently exceptional to warrant serious consideration in supplying H₂ to fuel cell systems.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Fuel cells are fast gaining extensive interest for portable and distributed power generation systems. Their exceptional operational characteristics such as high power densities, quiet operation, and inherent ability to generate near-zero pollution make them particularly attractive for a world experiencing simultaneous energy and environmental sustainability challenges [1,2]. The potential for widespread adoption of fuel cell technology however remains subdued owing to several significant techno-economic obstacles. Principally, the low volumetric energy density of hydrogen (H₂) effect storage and transportation difficulties, which create a wide gap in the H₂

^{*} Corresponding authors. HySA Infrastructure Centre of Competence, North-West University, Faculty of Engineering, Private Bag X6001, Potchefstroom Campus, 2520, South Africa. Tel.: +27 18 299 1366; fax: +27 18 299 1667.

E-mail addresses: 21876533@nwu.ac.za (S. Chiuta), Dmitri.Bessarabov@nwu.ac.za (D.G. Bessarabov). http://dx.doi.org/10.1016/j.ijhydene.2014.02.176

^{0360-3199/}Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

	Nomenclature				
	ΔH	reaction enthalpy, kJ mol $^{-1}$			
	m _{cat}	mass of catalyst in reactor, mg			
	ḿ _{Н2}	mass flow rate of hydrogen, kg s ^{-1}			
	m _{NH2} out	mass flow rate of residual ammonia, kg s^{-1}			
	m _{NILL} in	mass flow rate of ammonia at inlet, kg s ⁻¹			
	n _{T in}	total molar flow rate at reactor inlet, mol s^{-1}			
	n _{T out}	total molar flow rate at reactor outlet mol s^{-1}			
	P	nressure Pa			
	P	fuel cell power output equivalent W			
	r _{eq}	contridge bester nower requirement $k l s^{-1}$			
	Qe O	callinge heater power requirement, K) s malar hydrogen production rate, mol h^{-1}			
	QH ₂	ideal gas constant 82.057 cm ³ atm K^{-1} mol ⁻¹			
	R ideal gas constant, 82.057 cm ⁻ atm K ⁻				
	i temperature, K				
	l _r	reactor operating temperature, °C			
	υ	volumetric flow rate at inlet, cm ³ s			
	υ _c	volume of channel flow-by gap, cm ³			
	v_{H_2}	volumetric hydrogen production rate at outlet, $\mbox{cm}^3 \ h^{-1}$			
	$X_{\rm NH_3}$	ammonia conversion, %			
	$y_{\rm NH_3,eq}$	residual ammonia mole fraction at equilibrium			
conversion		conversion			
	$y_{\rm NH_3,in}$	ammonia mole fraction at reactor inlet			
	y _{NH₃,out}	residual ammonia mole fraction at reactor			
		outlet			
	$Y_{H_2} \\$	hydrogen yield, mol $g_{cat}^{-1} h^{-1}$			
	Greek syr	nbols			
	η	reformer energy efficiency, %			
	η_{PEM}	PEM fuel cell energy efficiency, %			
	τ	contact time, ms			
	Θ_{PEM}	PEM fuel cell hydrogen utilization, %			
	$\varphi_{\rm NH_3,eq}$	approach to residual ammonia equilibrium			
	concentration, %				
	Subscripts				
	c channel				
	cot	antalinet			
	Cat				
	e				
	eq	inlet			
	in	inlet			
	out	outlet			
	r	reactor			
	Т	total			
Abbreviations					
	AFC	alkaline fuel cell			
	DSS	daily start-up and shut-down			
	DFT	density functional theory			
	GC	gas chromatograph			
	GHSV	gas-hourly-space-velocity. Nml g_{rat}^{-1} h ⁻¹			
	HID	helium ionization detector			
	IMM	Institut für Mikrotechnik Mainz			
	LHV	low heating value, kI kg ⁻¹			
	PEM	polymer electrolyte membrane			
	nnhy	parts per hillion volume			
	PPUV	parto per bimon volume			

parts per million volume

X-ray diffraction

thermal conductivity detector

ppmv TCD

XRD

supply chain. The existing lack of an adequate infrastructure provokes the need for on-site generation of H_2 via reforming of alternative H_2 carriers in fuel processors. This is considered a promising stop-gap solution at least until problems of H_2 storage and economics are sufficiently resolved [3,4]. Table 1 shows the different H_2 -carriers that have adequate energy densities and are available for fuel processing to liberate H_2 .

Ammonia decomposition as a fuel processing technology has lately been receiving increasing attention for fuel cell applications [7-13]. The position of NH₃ decomposition as an ideal energy vector for the future is accentuated for various reasons. Most importantly, NH₃ is a carbon-free H₂ carrier that has superior H₂ content and gravimetric energy density compared to alternative carriers (Table 1). In addition, NH₃ is an inexpensive fuel (US $$_{2013}$ 580 ton⁻¹ [14]) that has an extensive and well-developed manufacturing-distribution infrastructure worldwide to guarantee uninterrupted fuel supply. Also, the availability of NH₃ is incontestable given that the annual global NH₃ production capacity continues to grow by more than 20% [15]. Furthermore, NH₃ decomposition is a simple one-step process (Eq. (1)) that has inherent cost benefits in view of reduced mass management challenges and balance-of-plant [13]. On-site power supply at off-grid telecommunication towers is one of the near-term business cases that has great value proposition [13].

$$2NH_3 \leftrightarrow N_2 + 3H_2 \qquad \Delta H^\circ = +46.19 \text{ kJ mol}^{-1} \tag{1}$$

The on-site and on-demand H_2 production using smallscale fuel processors is broadly considered key in developing H_2 infrastructure. In fact, miniaturization of the H_2 production system is indispensable especially for portable and distributed power generation using fuel cell technology. In a recent paper, Chiuta et al. [13] reviewed the state-of-the-art reactor technologies for NH₃ decomposition and revealed that

Table 1 — Specific and volumetric energy densities of common fuels and power sources [5,6].					
Fuel	H ₂ content (wt%)	Gravimetric energy density (Wh/kg)	Volumetric energy density (Wh/L)		
Ammonia	17.7	4318	4325		
Methanol	12.5	6400	4600		
Methanol	-	2040	-		
(incl.					
water ^a)					
Ethanol	13	7850	6100		
Ethanol	-	2578	-		
(incl.					
water ^a)					
Hydrogen	100	39000	1305		
(700 bar)					
Gasoline	15.8	12200	9700		
Gasoline	-	2140	-		
(incl.					
water ^a)					
Li-polymer	-	110	300		
battery					

^a Including mass of water for steam reforming.

Download English Version:

https://daneshyari.com/en/article/1272698

Download Persian Version:

https://daneshyari.com/article/1272698

Daneshyari.com