

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Gas tank fill-up in globally minimum time: Theory and application to hydrogen

Fernando Olmos, Vasilios I. Manousiouthakis*

Department of Chemical and Biomolecular Engineering, Hydrogen Engineering Research Consortium (HERC), University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1592, USA

ARTICLE INFO

Article history: Received 11 March 2014 Received in revised form 10 May 2014 Accepted 14 May 2014 Available online 24 June 2014

Keywords: Hydrogen Compressed natural gas Modeling Optimal control Global optimization

ABSTRACT

The process of filling-up high-pressure gas storage vessels consists of a gas source tank, an isenthalpic (Joule–Thomson or J–T) valve, a cooling system, and a gas storage vessel. These units are assumed to be thermally insulated. The fill-up process is formulated as a minimum time optimal control problem. Despite the nonlinear nature of the aforementioned optimal control problem, its global solution is obtained analytically. A novel transformation technique is employed, to decompose the problem into a process simulation problem independent of time, and a simpler minimum time control problem that only depends on the final molar density value and the maximum allowable feed mass flowrate. The feasibility of the fill-up is uniquely determined by the process simulation problem, and upon fill-up feasibility, the minimum time control problem is then globally solved. Two fillup case studies, involving two different system configurations are analyzed. In Case 1, the fill-up process has a constant molar enthalpy feed, and no cooling system. Case 2 considers a fill-up process with a constant temperature feed, delivered by an efficient cooling system. It was demonstrated that the optimal control strategy to achieve minimum fill-up time is to have the mass flowrate at its maximum allowable value during the entire duration of the fill-up. The presented problem formulation is general and can be applied to the fill-up of other gases, such as compressed natural gas.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

A significant issue faced by fueling stations that serve gaseous fuels, such as hydrogen and compressed natural gas (CNG), is to provide a rapid, complete, and safe replenishment of the fuel. In the case of gaseous hydrogen fuel, all fill-up specifications are subjected to a limitation of the gas storage vessel of hydrogen fuel cell car vehicles. From Ref. [1], type IV tanks with polyamide or plastic liner and carbon fiber wrap, may exhibit mechanical failure if the temperature of the gas inside them is raised above 85 °C (358.15 K) during their repeated fillups. Consequently, it is required that during fill-up the gas temperature inside the vehicle tank be kept below the maximum temperature limit of 85 °C (358.15 K). Subject to this safety requirement, the fill-up needs to be performed in as short time as possible, so the end-user does not see the hydrogen car fill-up process as a hindrance, compared to the fill-up of gasoline cars.

0360-3199/Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +1 310 206 0300; fax: +1 310 206 4107. E-mail address: vasilios@ucla.edu (V.I. Manousiouthakis).

http://dx.doi.org/10.1016/j.ijhydene.2014.05.091

To address the aforementioned safety and time constraints, current hydrogen fueling stations slow down the hydrogen fill-up process or pre-cool the hydrogen below 0°°C so they can employ a higher hydrogen fill-up rate. For example, Ref. [1] refers to fill-ups of on-board 700.00 bar and 150 L type III and type IV tanks with warm and cold fill-up processes. The warm process of Ref. [1] filled-up to 90% of completion a type III tank in 3-4 min with hydrogen starting at ambient temperature; a fill-up to 100% completion required cooling down the hydrogen to temperatures around 0 °C (273.15 K). Both warm fill-ups avoided the hydrogen's temperature rise reaching 85 °C. The cold fill-up process reported in Ref. [1] was performed on a type IV tank, with hydrogen from the station storage tank pre-cooled to temperatures between 253.15 K and 233.15 K (-20 °C to -40 °C), and the fill-up carried out in 3-4 min. Ref. [1] also carried out a cold fill-up in less than 3 min, when hydrogen was pre-cooled to 188.15 K (-85 °C). Ref. [1] discusses hydrogen pre-cooling to liquid nitrogen temperatures, 77.00 K or -196.15 °C, for fast fill-ups. Likewise, Ref. [2] states that for fill-ups under 4 min, precooling to temperatures from 248.15 K to 233.15 K (-25 °C to -40 °C) is required for 700.00 bar tanks, but pre-cooling may not be required for 350.00 bar tanks.

The fill-up of CNG cars faces similar issues to the ones described above for hydrogen. The typical pressure rating of CNG tanks is 250.00 bar (3600 psi). Ref. [3] describes two types of CNG fill-ups: fast-fill and time fill. A fast-fill of CNG can last 5 min and lacks control on the temperature of CNG during the under which the fill-up can be performed in four to 1 min, without violating safety limits. The problem formulation is general and can be employed in commercial applications like fill-up of hydrogen vehicles, fill-up of CNG vehicles, and fill-up of high-pressure storage tanks.

Conceptual framework and solution approach

Thermodynamic modeling for real gases

Modeling the fill-up of high-pressure storage vessels with gases requires that a detailed thermodynamic model be employed for the gas phase. In this work, a gas phase that consists of only one chemical species is considered, and Gibbs' phase rule then suggests that two independent thermodynamic variables (in this work temperature (T) and molar density (ρ)) are required to fully define the system state. The Generic Cubic (GC) equation of state is then employed to describe the dependence of pressure on these independent variables as follows:

$$P: \mathbb{R}^2 \to \mathbb{R}, \quad P: (T,\rho) \to P(T,\rho) \triangleq \frac{RT\rho}{1-b\rho} - \frac{a(T)\rho^2}{(1+\varepsilon b\rho)(1+\sigma b\rho)}$$
(1)

In addition, a self-consistent thermodynamic model for the gas molar internal energy, using residual properties and an ideal gas heat capacity model is employed, as described in Ref. [4] and shown below:

$$\begin{aligned} u: \ \mathbb{R}^{2} \to \mathbb{R}, \quad u: \ (T,\rho) \to u(T,\rho) &\triangleq u^{\mathbb{R}} + \ln\left(\frac{1+\sigma b\rho}{1+\epsilon b\rho}\right) \left[\left(T \frac{\Psi \mathbb{R}^{2} T_{c}}{\mathbb{P}_{c} b(\sigma-\epsilon)}\right) \left(-0.5 \left(\frac{T}{T_{c}}\right)^{-1.5}\right) - \frac{1}{b(\sigma-\epsilon)} \frac{\Psi \mathbb{R}^{2} T_{c}^{2}}{\mathbb{P}_{c}} \left(\frac{T}{T_{c}}\right)^{-0.5}\right] \\ &- \ln\left(\frac{1+\sigma b\rho^{\mathbb{R}}}{1+\epsilon b\rho^{\mathbb{R}}}\right) \left(T^{\mathbb{R}} \frac{\Psi \mathbb{R}^{2} T_{c}}{\mathbb{P}_{c} b(\sigma-\epsilon)} \left(-0.5 \left(\frac{T^{\mathbb{R}}}{T_{c}}\right)^{-1.5}\right) - \frac{1}{b(\sigma-\epsilon)} \frac{\Psi \mathbb{R}^{2} T_{c}^{2}}{\mathbb{P}_{c}} \left(\frac{T^{\mathbb{R}}}{T_{c}}\right)^{-0.5}\right) \\ &+ \left(C_{p_{\mathbb{A}}}^{0} - \mathbb{R}\right) \left(T - T^{\mathbb{R}}\right) + \frac{1}{2} C_{p_{\mathbb{B}}}^{0} \left(T^{2} - (T^{\mathbb{R}})^{2}\right) + \frac{1}{3} C_{p_{\mathbb{C}}}^{0} \left(T^{3} - (T^{\mathbb{R}})^{3}\right) + \frac{1}{4} C_{p_{\mathbb{D}}}^{0} \left(T^{4} - (T^{\mathbb{R}})^{4}\right) \\ &+ \frac{1}{5} C_{p_{\mathbb{E}}}^{0} \left(T^{5} - (T^{\mathbb{R}})^{5}\right) \end{aligned}$$
(2)

fill-up process. On the other hand, a time fill can last several hours, is usually performed overnight, and provides complete control over the CNG temperature.

In this work, a novel solution methodology, that tackles the issues mentioned above, is proposed for the fill-up process of any high-pressure storage vessel. Based on a self-consistent thermodynamic, and conservation law based model described in Ref. [4], the fill-up process is formulated as a minimum time optimal control problem that incorporates all safety and efficiency concerns as problem constraints. Then, a novel transformation allows the decomposition of the minimum time control problem into a simulation problem that determines problem feasibility, and a time optimal control problem that can be analytically solved. Two fill-up cases are explored: gas fed at constant molar enthalpy and gas fed at constant temperature. The first case gives rise to a set of algebraic equations, while the second case gives rise to a differential-algebraic-equation (DAE) system. Finally, the solution methodology for both cases is applied to the case of a hydrogen fuel cell car fill-up, and conditions are identified

Then, the gas molar enthalpy is readily derived as:

$$h: \mathbb{R}^2 \to \mathbb{R}, \quad h: (T,\rho) \to h(T,\rho) \triangleq u(T,\rho) + P(T,\rho)/\rho$$
 (3)

Gas storage vessel fill-up model

Two gas storage vessel fill-up configurations are illustrated in Fig. 1a and b. The first does not employ a cooling system, while the second one does. They both employ the following pieces of equipment: gas source tank, isenthalpic (Joule–Thomson or J–T) valve, and gas storage vessel.

The following set of assumptions is employed in creating a model for the above system configurations:

- The overall process is adiabatic, so no heat transfer is allowed between any of the system components and the environment, at any point in time.
- The pressure of the isenthalpic valve outlet is equal to the pressure inside the gas storage vessel (whether a cooling system exists or not).

Download English Version:

https://daneshyari.com/en/article/1273013

Download Persian Version:

https://daneshyari.com/article/1273013

Daneshyari.com