

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

A modelling evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation

Steven Chiuta ^{a,b,*}, Raymond C. Everson ^{a,b}, Hein W.J.P. Neomagus ^{a,b}, Louis A. Le Grange ^b, Dmitri G. Bessarabov ^{a,*}

^a HySA Infrastructure Centre of Competence, North-West University, Faculty of Engineering, Private Bag X6001, Potchefstroom Campus, 2520, South Africa

^b School of Chemical and Minerals Engineering, North-West University, Faculty of Engineering, Private Bag X6001, Potchefstroom Campus, 2520, South Africa

ARTICLE INFO

Article history: Received 3 April 2014 Received in revised form 16 May 2014 Accepted 22 May 2014 Available online 21 June 2014

Keywords:

Ammonia decomposition Microchannel reactor Hydrogen generation Modelling evaluation Computational fluid dynamics Reaction-coupled transport phenomena

ABSTRACT

Hydrogen production from an ammonia-fuelled microchannel reactor is simulated in a three-dimensional (3D) model implemented via Comsol MultiphysicsTM. The work described in this paper endeavours to obtain a mathematical framework that provides an understanding of reaction-coupled transport phenomena within the microchannel reactor. The transport processes and reactor performance are elucidated in terms of velocity, temperature, and species concentration distributions, as well as local reaction rate and NH₃ conversion profiles. The baseline case is first investigated to comprehend the behaviour of the microchannel reactor, then microstructural design and operating parameters are methodically altered around the baseline conditions to explore the optimum values. The simulation results show that an optimum NH₃ space velocity (GHSV) of 65,000 Nml g_{cat}^{-1} h⁻¹ yields 99.1% NH₃ conversion and a power density of 32 kW_e L⁻¹ at the highest operating temperature of 973 K. It is also shown that a 40-µm-thick porous washcoat is most desirable at these optimum conditions. Finally, a low channel hydraulic diameter (225 µm) is observed to contribute to high NH₃ conversion. Mass transport limitations in the porous-washcoat and gas-phase are negligible as depicted by the Damköhler and Fourier numbers, respectively. The experimental microchannel reactor yields 98.2% NH₃ conversion and a power density of 30.8 kW_e L⁻¹ when tested at the optimum operating conditions established by the model. Good agreement with experimental data is observed, so the integrated experimental-modelling approach developed in this paper may well provide an incisive step toward the efficient design of ammonia-fuelled microchannel reformers.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

^{*} Corresponding authors. HySA Infrastructure Centre of Competence, North-West University, Faculty of Engineering, Private Bag X6001, Potchefstroom Campus, 2520, South Africa. Tel.: +27 18 299 1366; fax: +27 18 299 1667.

E-mail addresses: 21876533@nwu.ac.za, stevenchiuta@gmail.com (S. Chiuta), Dmitri.Bessarabov@nwu.ac.za (D.G. Bessarabov). http://dx.doi.org/10.1016/j.ijhydene.2014.05.146

^{0360-3199/}Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Nomenclature		$\langle V \rangle$	fluid velocity in porous region, m s ⁻¹
a _i	stoichiometric coefficient of species i	U _i	atomic diffusion volume of species i, cm ³ mol ⁻¹
C _F	Forchheimer drag coefficient	v _j	x velocity components in x y z directions m s ⁻¹
C_{H_2}	local H_2 concentration, mol m ⁻³	$v_x, v_y,$	channel width um
Cin	concentration of $ m NH_3$ at inlet, mol $ m m^{-3}$	VV V	NH, conversion %
C _{pi}	specific heat capacity of species i, J $ m kg^{-1}$ $ m K^{-1}$	Λ _{NH3}	mole fraction of species i
C _{p,eff}	effective specific heat capacity, J kg^{-1} K^{-1}	<i>y</i> ₁	mole fraction of species i
C _{ps}	specific heat capacity of catalyst, J kg^{-1} K^{-1}	Greek symbols	
$C_{\rm NH_3}$	local NH ₃ concentration, mol m^{-3}	α	channel aspect ratio
D	species diffusivity, $m^2 s^{-1}$	δ_s	porous washcoat thickness, µm
$D_{\rm H}$	channel hydraulic diameter, μm	8	porosity
D_{ij}	binary diffusivity of species i in j, $m^2 s^{-1}$	Λ	mean free path, nm
D _{ij,eff}	effective binary diffusivity, $m^2 s^{-1}$	$\mu_{ m B}$	Brinkmann viscosity, Pa s
Da	Darcy number	ρ	density of fluid, kg m^{-3}
Dam	Damköhler number	$ ho_{ m s}$	density of catalyst, kg m_{-3}
Ea	activation energy, J mol^{-1}	К	permeability, m ₂
Fin	molar flux at inlet, mol s $^{-1}$	ω_i	mass fraction of species i
Fout	molar flux at outlet, mol s $^{-1}$	$\langle \omega_i angle$	mass fraction of species i in porous region
Fo	Fourier number	au	residence time, s
Н	channel height, μm	$ au_{ m d}$	internal diffusion timescale, s
ΔH_r	reaction enthalpy, J mol $^{-1}$	$ au_{ m D}$	external diffusion timescale, s
k	thermal conductivity of fluid, W ${ m m^{-1}}~{ m K^{-1}}$	$ au_{ m r}$	reaction timescale, s
k _{eff}	effective thermal conductivity, W $\mathrm{m}^{-1}\mathrm{K}^{-1}$	μ	viscosity of fluid, Pa s
ko	pre-exponential factor, mol $g^{-1} h^{-1} bar^{-1}$	Subscripts and superscripts	
ks	thermal conductivity of catalyst, W ${ m m^{-1}}~{ m K^{-1}}$	200301	activation
Kn	Knudsen number	a atm	atmosphere
L	channel length, m	cat	catalyst
M_i	molecular weight of species i, kg mol^{-1}	cnet	constant
M_j	molecular weight of species j, kg mol $^{-1}$	eff	effective
n	normal unit vector	in	inlet
Р	pressure, Pa	out	outlet
$P_{\rm atm}$	atmospheric pressure, atm	r	reaction
$\langle P \rangle$	pressure in porous domain, Pa	s	catalyst
R	reaction rate, $m^{-3} s^{-1}$	w	wall
R _{cnst}	ideal gas constant, 82.057 $ m cm^3$ atm $ m K^{-1} m mol^{-1}$	vv	wan
R _r	reaction rate, mol $kg^{-1} s^{-1}$	Abbreviations	
Re	Reynolds number	CFD	computational fluid dynamics
Re _k	pore Reynolds number	FSG	Fuller–Schettler–Giddings
Т	temperature, K	PARDI	SO parallel sparse direct linear solver
T_w	wall temperature, K	PEM	polymer electrolyte membrane
$\langle T \rangle$	temperature in porous region, K	ppbv	parts per billion volume
u _{in}	fluid velocity at inlet, m s^{-1}		
v	fluid velocity vector		

Introduction

PEM fuel cells using hydrogen (H₂) fuel are expected to be used extensively as alternative power sources in various portable and distributed applications. The low volumetric energy density of H₂ however makes difficult its transportation and storage to isolated locations. This present lack of an adequate H₂ delivery infrastructure presents one of the few important challenges to the widespread implementation and commercialization of PEM fuel cell systems in distributed applications. Consequently, the on-site generation of H₂ via reforming of alternative H₂ carriers in fuel processors is considered a promising stop-gap solution [1,2]. In view of this, the processing of several H_2 carriers has been proposed in literature. Among these, ammonia decomposition (also commonly referred to as ammonia reforming) has lately been receiving increased attention for various desirable reasons.

Most importantly, NH₃ is a CO_x -free H₂ carrier that has superior H₂ content and gravimetric energy density compared to other alternative carriers (Table 1) [3–5]. In addition, NH₃ is an inexpensive fuel (US\$₂₀₁₃580 ton⁻¹ [6]) that has an extensive and well-developed manufacturing-distribution infrastructure worldwide to guarantee uninterrupted fuel supply. Also, the availability of NH₃ is incontestable given that the annual global NH₃ production capacity continues to grow by Download English Version:

https://daneshyari.com/en/article/1273157

Download Persian Version:

https://daneshyari.com/article/1273157

Daneshyari.com