

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Effects of hydrogen-altered yielding and work hardening on plastic-zone evolution: A finite-element analysis

Daisuke Sasaki ^a, Motomichi Koyama ^b, Kenji Higashida ^b, Kaneaki Tsuzaki ^b, Hiroshi Noguchi ^{b,*}

^a Graduate School of Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan ^b Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan

ARTICLE INFO

Article history: Received 28 February 2015 Received in revised form 28 May 2015 Accepted 29 May 2015 Available online 28 June 2015

Keywords: Hydrogen Crack-tip plasticity Diffusion Bulk Ductility Finite elements

ABSTRACT

In the present paper, finite-element analysis of a cracked specimen was conducted using a unified model for the elastic—plastic deformation and hydrogen diffusion. We considered the effects of the hydrogen-reduced yielding strength and work-hardening coefficient and used a comparison parameter in the simulation of the hydrogen-localized plastic zone near a crack tip. We realized two important facts: (1) the normal component of the plastic strain in the direction of remote stress near the crack tip is significantly increased by the reduced work-hardening coefficient at the same stress-intensity factor; (2) the reduced work-hardening coefficient enhances the localization of the plastic strain in the direction of remote stress hear the crack-tip plastic strain in the direction of remote stress, which probably determines the ductile—brittle transition of the fatigue-crack propagation mode under a hydrogen atmosphere. These results indicate that the reduction in work-hardening coefficient and the utilization of the crack-tip plastic strain as a parameter to organize the data play important roles in the prediction of the transition condition of hydrogen-accelerated fatigue-crack propagation.

Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

The establishment of hydrogen-related infrastructures requires a thorough understanding of the effects of hydrogen on mechanical properties. Recently, it has been reported that hydrogen induces softening [1] or hardening [1,2]. More specifically, hydrogen-enhanced local plasticity (HELP) associated with fatigue-crack propagation has drawn attention toward practical applications of hydrogen because fatigue fracture is a major cause of destruction in accidents. For instance, hydrogen uptake is known to accelerate the fatigue-crack propagation rate and drastically deteriorate the fatigue life owing to a change in the crack-propagation mode [3,4]. The brittle- or brittle-like-crack propagation rate in the fatigue-crack mode is around 10 times faster than that in the ductile mode [4]. Therefore, understanding the ductile—brittle transition condition is essential to the prediction of fatigue life in a hydrogen environment.

* Corresponding author.

E-mail address: nogu@mech.kyushu-u.ac.jp (H. Noguchi).

http://dx.doi.org/10.1016/j.ijhydene.2015.05.187

0360-3199/Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Nomenclature

b_0 initial radius of blunting crack tip, (m) C_L hydrogen concentration at lattice sites on crack flank surface, (m ⁻³) C_{LB} initial hydrogen concentration at trap sites, (m ⁻³) D_L lattice diffusivity, (m ² s ⁻¹) D_L *effective diffusion coefficient E Young's modulus, (GPa) J hydrogen flux, (s ⁻¹ m ⁻²) K_T equilibrium constant K_1 mode I stress intensity factor, (MPa m ^{1/2}) n work-hardening exponent N_L number of lattice sites per unit volume, (m ⁻³) r_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, (J mol ⁻¹ K ⁻¹) T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) u_y glastic-zone width along x-axis δ_y plastic-zone width along y-axis δ_y plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along y-axis with hydrogen $effect$ δ_y δ_y plastic-zone width along y-axis δ_y plastic-zone width along y-axis δ_{y1} plastic-zone width along y-axis δ_y plastic-zone width along		
C_L hydrogen concentration (m^{-3}) C_{LB} initial hydrogen concentration at lattice sites on crack flank surface, (m^{-3}) D_L lattice diffusivity, $(m^2 s^{-1})$ D_L attice diffusivity, $(m^2 s^{-1})$ D_L^* effective diffusion coefficient E Young's modulus, (GPa) J hydrogen flux, $(s^{-1} m^{-2})$ K_T equilibrium constant K_1 mode I stress intensity factor, $(MPa m^{1/2})$ n work-hardening exponent N_L number of trap sites per unit volume, (m^{-3}) n_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, $(J mol^{-1} K^{-1})$ T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_{f} total loading time u_x displacement in x-direction, (m) u_y displacement in x-direction, (m) u_y plastic-zone width along x-axis δ_y plastic-zone width along y-axis δ_{x0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along y-axis with hydroger $effect\delta_y\delta_yplastic-zone width along y-axis with hydrogereffect\delta_yplastic-zone width along y-axis with hydrogereffect\delta_yplastic-zone width along y-axis with hydrogereffect\delta_yplastic-zone width along y-axis$	bo	initial radius of blunting crack tip, (m)
C_{LB} initial hydrogen concentration at lattice sites on crack flank surface, (m^{-3}) C_T hydrogen concentration at trap sites, (m^{-3}) D_L lattice diffusivity, $(m^2 s^{-1})$ D_L effective diffusion coefficient E Young's modulus, (GPa) J hydrogen flux, $(s^{-1} m^{-2})$ K_T equilibrium constant K_I mode I stress intensity factor, (MPa m ^{1/2}) n work-hardening exponent N_L number of lattice sites per unit volume, (m^{-3}) n_T number of trap sites per unit volume, (m^{-3}) n_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, $(I mol^{-1} K^{-1})$ T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) u_y gastic-zone width along x-axis δ_y plastic-zone width along y-axis δ_x plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along y-axis with hydroger $effect$ δ_y plastic-zone width along y-axis with hydroger $effect\delta_yplastic-zone width along y-axis with hydrogereffect\delta_yplastic-zone width along y-axis with hydrogereffect\delta_yplastic-zone width along y-axis with hydrogereffect$	CL	hydrogen concentration, (m ⁻³)
C_T hydrogen concentration at trap sites, (m^{-3}) D_L lattice diffusivity, $(m^2 s^{-1})$ D_L^* effective diffusion coefficient E Young's modulus, (GPa) J hydrogen flux, $(s^{-1} m^{-2})$ K_T equilibrium constant K_1 mode I stress intensity factor, (MPa m ^{1/2}) n work-hardening exponent N_L number of lattice sites per unit volume, (m^{-3}) N_T number of trap sites per unit volume, (m^{-3}) r_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, $(J mol^{-1} K^{-1})$ T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 f_t total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) u_y displacement in y-direction, (m) v_H partial molar volume, $(m^3 mol^{-1})$ W_B trap-binding energy, $(J mol^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis withouthydrogen effect δ_{y0} δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_{y1} δ_y plastic-zone width along y-axis with hydroger $effect$ δ_y δ_y plastic-zone width along y-axis with hydroger $effect$ δ_y δ_y plastic-zone width along y-axis with hydroger $effect$ δ_y <tr< td=""><th>C_{LB}</th><td>initial hydrogen concentration at lattice sites on crack flank surface, (m^{-3})</td></tr<>	C_{LB}	initial hydrogen concentration at lattice sites on crack flank surface, (m^{-3})
D1lattice diffusivity, $(m^2 s^{-1})$ D1lattice diffusion coefficientEYoung's modulus, (GPa) Jhydrogen flux, $(s^{-1} m^{-2})$ K_T equilibrium constant K_I mode I stress intensity factor, $(MPa m^{1/2})$ nwork-hardening exponentN1number of lattice sites per unit volume, (m^{-3}) N_T number of trap sites per unit volume, (m^{-3}) N_T number of trap sites per unit volume, (m^{-3}) T_0 radius of crack model, (m) rdistance from the crack tip, (m) Rgas constant, $(J mol^{-1} K^{-1})$ Ttemperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) U_H partial molar volume, $(m^3 mol^{-1})$ V_H partial molar volume, $(m^3 mol^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis with hydrogereffect δ_y1 δ_y1 plastic-zone width along y-axis with hydrogereffect δ_y plastic-zone width along y-axis with hydrogereffect δ_y1 plastic-zone width along y-axis <th>Ст</th> <td>hydrogen concentration at trap sites, (m^{-3})</td>	Ст	hydrogen concentration at trap sites, (m^{-3})
D_1^* effective diffusion coefficient E Young's modulus, (GPa) J hydrogen flux, (s ⁻¹ m ⁻²) K_T equilibrium constant K_I mode I stress intensity factor, (MPa m ^{1/2}) n work-hardening exponent N_L number of lattice sites per unit volume, (m ⁻³) N_T number of trap sites per unit volume, (m ⁻³) r_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, (J mol ⁻¹ K ⁻¹) T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in volume, (m ³ mol ⁻¹) W_B trap-binding energy, (J mol ⁻¹) δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis withouthydrogen effect δ_{y0} δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_{q1} δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_{q1} δ_{q2} plastic-zone width along r -axis ϵ_p equivalent plastic strain ϵ_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip θ_L occupancy of trap sites v Poisson's ratio ξ coupli	D	lattice diffusivity. ($m^2 s^{-1}$)
E Young's modulus, (GPa) J hydrogen flux, (s ⁻¹ m ⁻²) K _T equilibrium constant K _I mode I stress intensity factor, (MPa m ^{1/2}) n work-hardening exponent N _L number of lattice sites per unit volume, (m ⁻³) N _T number of trap sites per unit volume, (m ⁻³) r distance from the crack tip, (m) R gas constant, (J mol ⁻¹ K ⁻¹) T temperature, (K) t _{e=0.6} time when crack-tip plastic strain reaches 0.6 t _f total loading time u _x displacement in x-direction, (m) u _y displacement in y-direction, (m) V _H partial molar volume, (m ³ mol ⁻¹) W _B trap-binding energy, (J mol ⁻¹) δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis without hydrogen effect δ_{y0} plastic-zone width along y-axis without hydrogen effect δ_{y1} plastic-zone width along y-axis with hydroger effect δ_{y1} plastic-zone width along y-axis with hydroger effect δ_{y1} plastic-zone width along y-axis with hydroger effect δ_{θ} plastic-zone width along y-axis with hydroger effect parameter η coupling-effect parameter η cocupancy of trap sites ν Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_{h} hydrostatic stress, (MPa) σ_{0}	D1*	effective diffusion coefficient
Jhydrogen flux, $(s^{-1} m^{-2})$ K_T equilibrium constant K_I mode I stress intensity factor, (MPa m ^{1/2})nwork-hardening exponent N_L number of trap sites per unit volume, (m^{-3}) N_T number of trap sites per unit volume, (m^{-3}) T_0 radius of crack model, (m) rdistance from the crack tip, (m) Rgas constant, $(J mol^{-1} K^{-1})$ Ttemperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) W_B trap-binding energy, $(J mol^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_y1 plastic-zone width along y-axis with hydroger $effect$ δ_y1 plastic-zone width along y-axis with hydroger $effect$ δ_y1 plastic-zone width along θ -axis δ_r plastic-zone width along θ -axis <t< td=""><th>E</th><td>Young's modulus, (GPa)</td></t<>	E	Young's modulus, (GPa)
KTequilibrium constantKImode I stress intensity factor, (MPa m ^{1/2})nwork-hardening exponentNLnumber of lattice sites per unit volume, (m ⁻³)roradius of crack model, (m)rdistance from the crack tip, (m)Rgas constant, (J mol ⁻¹ K ⁻¹)Ttemperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_{f} total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) W_B trap-binding energy, (J mol ⁻¹) δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis withouthydrogen effect δ_{y1} ϕ_{y1} plastic-zone width along y-axis with hydroger $effect$ δ_q ϕ_y plastic-zone width along θ -axis δ_r plas	J	hydrogen flux, $(s^{-1} m^{-2})$
K_1 $mode I$ stress intensity factor, (MPa m ^{1/2}) n work-hardening exponent N_L number of lattice sites per unit volume, (m ⁻³) N_T number of trap sites per unit volume, (m ⁻³) r_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, (J mol ⁻¹ K ⁻¹) T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) V_H partial molar volume, (m ³ mol ⁻¹) W_B trap-binding energy, (J mol ⁻¹) δ_x plastic-zone width along x-axis δ_y plastic-zone width along x-axis withouthydrogen effect δ_{x1} δ_{y1} plastic-zone width along x-axis with hydrogereffect δ_{θ} plastic-zone width along θ -axis δ_r plastic-zone width along θ -axis θ_r plastic-zone width along θ -axis θ_r plastic-zone width along θ -axis θ_r plastic-zone width along θ -axis <t< td=""><th>KT</th><td>equilibrium constant</td></t<>	KT	equilibrium constant
nwork-hardening exponent N_L number of lattice sites per unit volume, (m^{-3}) N_T number of trap sites per unit volume, (m^{-3}) r_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, $(J mol^{-1} K^{-1})$ T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) w_H partial molar volume, $(m^3 mol^{-1})$ W_B trap-binding energy, $(J mol^{-1})$ δ_x plastic-zone width along x-axis δ_y0 plastic-zone width along y-axis withouthydrogen effect δ_{x1} δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_{y1} δ_y plastic-zone width along θ -axis δ_r plastic-zone width along r -axis with hydrogereffect δ_{θ} δ_{y1} plastic-zone width along r -axis δ_r plastic-zone width	K	mode I stress intensity factor, (MPa m ^{1/2})
N_L number of lattice sites per unit volume, (m^{-3}) N_T number of trap sites per unit volume, (m^{-3}) r_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, $(J mol^{-1} K^{-1})$ T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) u_y displacement in y-direction, (m) V_H partial molar volume, $(m^3 mol^{-1})$ W_B trap-binding energy, $(J mol^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{θ} plastic-zone width along r -axis ϵ_p equivalent plastic strain ϵ_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip θ_L occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m^{-3}) σ_h hydrostatic stress, (MPa) σ_0 initial yield strength, (MPa)	n	work-hardening exponent
N_T number of trap sites per unit volume, (m^{-3}) r_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, $(J mol^{-1} K^{-1})$ T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) v_H partial molar volume, $(m^3 mol^{-1})$ W_B trap-binding energy, $(J mol^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{θ} plastic-zone width along r -axis δ_r plastic-zone width along r -axis ϵ_0 initial yield strain ζ coupling-effect parameter η not coupling effect parameter η not	NL	number of lattice sites per unit volume, (m^{-3})
r_0 radius of crack model, (m) r distance from the crack tip, (m) R gas constant, $(J mol^{-1} K^{-1})$ T temperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) w_y displacement in y-direction, (m) V_H partial molar volume, $(m^3 mol^{-1})$ W_B trap-binding energy, $(J mol^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis ϕ_y plastic-zone width along y-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{y1} plastic-zone width along θ -axis δ_r plastic-zone width along θ -axis δ_r plastic-zone width along r -a	NT	number of trap sites per unit volume, (m^{-3})
rdistance from the crack tip, (m)Rgas constant, (J mol ⁻¹ K ⁻¹)Ttemperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) V_H partial molar volume, (m ³ mol ⁻¹) W_B trap-binding energy, (J mol ⁻¹) δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_{y1} plastic-zone width along θ -axis δ_r <t< td=""><th>ro</th><td>radius of crack model, (m)</td></t<>	ro	radius of crack model, (m)
Rgas constant, $(\int mol^{-1} K^{-1})$ Ttemperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_{f} total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) V_H partial molar volume, $(m^3 mol^{-1})$ W_B trap-binding energy, $(\int mol^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis δ_{x0} plastic-zone width along y-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_{θ} ϕ_{y1} plastic-zone width along θ -axis δ_r plastic-zone width along θ -axis θ_r <t< td=""><th>r</th><td>distance from the crack tip, (m)</td></t<>	r	distance from the crack tip, (m)
Ttemperature, (K) $t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_{f} total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) V_H partial molar volume, (m ³ mol ⁻¹) W_B trap-binding energy, (J mol ⁻¹) δ_x plastic-zone width along x-axis δ_y plastic-zone width along x-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along x-axis with hydrogereffect δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_{θ} plastic-zone width along y-axis with hydrogereffect δ_{θ} plastic-zone width along y-axis ϕ_1 plastic-zone width along y-axis <t< td=""><th>R</th><td>gas constant, (J mol^{-1} K^{-1})</td></t<>	R	gas constant, (J mol ^{-1} K ^{-1})
$t_{e=0.6}$ time when crack-tip plastic strain reaches 0.6 t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) V_H partial molar volume, $(m^3 mol^{-1})$ W_B trap-binding energy, $(J mol^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis δ_{x0} plastic-zone width along x-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along x-axis with hydrogereffect δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_{y1} plastic-zone width along g -axis ϕ_r plastic-zone width along r -axis $effect$ δ_{y1} plastic-zone width along r -axis $effect$ δ_{q} plastic-zone width along r -axis $effect$ δ_{q} plastic-zone width along r -axis $effect$ δ_{q} plastic-zone width along r -axis e_p equivalent plastic strain e_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter η couplancy of lattice sites θ_T occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_0 initial yield str	Т	temperature, (K)
t_f total loading time u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) V_H partial molar volume, (m ³ mol ⁻¹) W_B trap-binding energy, (J mol ⁻¹) δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis δ_x plastic-zone width along y-axis withouthydrogen effect δ_{y0} δ_{y1} plastic-zone width along y-axis withouthydrogen effect δ_{x1} δ_{y1} plastic-zone width along y-axis with hydrogereffect δ_y δ_y plastic-zone width along y-axis $\delta_$	$t_{\epsilon=0.6}$	time when crack-tip plastic strain reaches 0.6
u_x displacement in x-direction, (m) u_y displacement in y-direction, (m) V_H partial molar volume, $(m^3 \text{ mol}^{-1})$ W_B trap-binding energy, $(I \text{ mol}^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis δ_{x0} plastic-zone width along x-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along x-axis with hydrogeneffect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{θ} plastic-zone width along θ -axis δ_r plastic-zone width along θ -axis δ_r plastic-zone width along θ -axis δ_r plastic-zone width along r -axis ϵ_{p} equivalent plastic strain ϵ_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter η coupling-effect parameter θ_1 occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_0 initial yield strength, (MPa)	t _f	total loading time
u_y displacement in y-direction, (m) V_H partial molar volume, (m ³ mol ⁻¹) W_B trap-binding energy, (J mol ⁻¹) δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis δ_{x0} plastic-zone width along x-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along x-axis with hydrogeneffect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{y1} plastic-zone width along p-axis δ_r plastic-zone width along p-axis ϕ_r plastic-zone width along r-axis ϵ_p equivalent plastic strain ϵ_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip θ_L occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_0 initial yield strength, (MPa)	u _x	displacement in x-direction, (m)
$V_{\rm H}$ partial molar volume, $(m^3 \text{ mol}^{-1})$ $W_{\rm B}$ trap-binding energy, $(J \text{ mol}^{-1})$ $\delta_{\rm x}$ plastic-zone width along x-axis δ_{y} plastic-zone width along y-axis δ_{x0} plastic-zone width along x-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{x1} plastic-zone width along y-axis with hydrogeneffect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{θ} plastic-zone width along θ -axis δ_r plastic-zone width along θ -axis δ_r plastic-zone width along π -axis $\epsilon_{\rm p}$ equivalent plastic strain ϵ_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip $\theta_{\rm L}$ occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) $\sigma_{\rm h}$ hydrostatic stress, (MPa) σ_0 initial yield strength, (MPa)	u _v	displacement in y-direction, (m)
W_B trap-binding energy, $(f mol^{-1})$ δ_x plastic-zone width along x-axis δ_y plastic-zone width along y-axis δ_{x0} plastic-zone width along x-axis withouthydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{y1} plastic-zone width along x-axis with hydrogeneffect δ_{y1} plastic-zone width along x-axis with hydrogeneffect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{θ} plastic-zone width along θ -axis δ_r plastic-zone width along θ -axis δ_r plastic-zone width along r -axis ϵ_p equivalent plastic strain ϵ_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip θ_L occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_0 initial yield strength, (MPa)	V _H	partial molar volume, (m³ mol ⁻¹)
	WB	trap-binding energy, (J mol $^{-1}$)
	$\delta_{\mathbf{x}}$	plastic-zone width along x-axis
$\begin{array}{lll} \delta_{x0} & \mbox{plastic-zone width along x-axis without} \\ & \mbox{hydrogen effect} \\ \delta_{y0} & \mbox{plastic-zone width along y-axis without} \\ & \mbox{hydrogen effect} \\ \delta_{x1} & \mbox{plastic-zone width along x-axis with hydrogen} \\ & \mbox{effect} \\ \delta_{y1} & \mbox{plastic-zone width along y-axis with hydrogen} \\ & \mbox{effect} \\ \delta_{\theta} & \mbox{plastic-zone width along η-axis} \\ \phi_{\mu} & \mbox{plastic-zone width along η-axis} \\ \delta_{r} & \mbox{plastic-zone width along η-axis} \\ \delta_{r} & \mbox{plastic-zone width along η-axis} \\ \delta_{r} & \mbox{plastic-zone width along η-axis} \\ \delta_{\rho} & \mbox{plastic-zone width along η-axis} \\ \delta_{r} & \mbox{plastic-zone width along η-axis} \\ \delta_{\rho} & \mbox{coupling-effect parameter} \\ \theta_{\mu} & \mbox{occupancy of trap sites} \\ v & \mbox{Poisson's ratio} \\ \xi & \mbox{coupling-effect parameter} \\ \rho_{\mu} & \mbox{material density, (kg m^{-3})} \\ \sigma_{h} & \mbox{hydrostatic stress, (MPa)} \\ \sigma_{0} & \mbox{initial yield strength, (MPa)} \\ \end{array}$	δ_y	plastic-zone width along y-axis
hydrogen effect δ_{y0} plastic-zone width along y-axis withouthydrogen effect δ_{x1} plastic-zone width along x-axis with hydrogeneffect δ_{y1} plastic-zone width along y-axis with hydrogeneffect δ_{θ} plastic-zone width along θ -axis δ_r plastic-zone width along τ -axis ϵ_p equivalent plastic strain ϵ_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip θ_L occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_0 initial yield strength, (MPa)	$\delta_{\rm x0}$	plastic-zone width along x-axis without
$\begin{array}{lll} \delta_{y0} & \mbox{plastic-zone width along y-axis without} \\ & \mbox{hydrogen effect} \\ \delta_{x1} & \mbox{plastic-zone width along x-axis with hydrogen} \\ & \mbox{effect} \\ \delta_{y1} & \mbox{plastic-zone width along y-axis with hydrogen} \\ & \mbox{effect} \\ \delta_{\theta} & \mbox{plastic-zone width along θ-axis} \\ \delta_{\theta} & \mbox{coupling-effect parameter} \\ \theta & \mbox{angle of crack model at the crack tip} \\ \theta_{L} & \mbox{occupancy of trap sites} \\ v & \mbox{Poisson's ratio} \\ \xi & \mbox{coupling-effect parameter} \\ \rho & \mbox{material density, (kg m^{-3})} \\ \sigma_{h} & \mbox{hydrostatic stress, (MPa)} \\ \sigma_{0} & \mbox{initial yield strength, (MPa)} \\ \sigma_{0} & \mbox{initial yield strength, (MPa)} \\ \end{array}$		hydrogen effect
hydrogen effect δ_{x1} plastic-zone width along x-axis with hydrogen effect δ_{y1} plastic-zone width along y-axis with hydrogen effect δ_{θ} plastic-zone width along θ -axis δ_{r} plastic-zone width along r -axis ϵ_{p} equivalent plastic strain ϵ_{0} initial yield strain ζ coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip θ_{L} occupancy of lattice sites θ_{T} occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_{h} hydrostatic stress, (MPa) σ_{0} initial yield strength, (MPa)	δ_{y0}	plastic-zone width along y-axis without
$\begin{array}{lll} \delta_{x1} & \mbox{plastic-zone width along x-axis with hydroger} \\ & \mbox{effect} \\ \delta_{y1} & \mbox{plastic-zone width along y-axis with hydroger} \\ & \mbox{effect} \\ \delta_{\theta} & \mbox{plastic-zone width along θ-axis} \\ \delta_{r} & \mbox{plastic-zone width along r-axis} \\ \epsilon_{p} & \mbox{equivalent plastic strain} \\ \epsilon_{0} & \mbox{initial yield strain} \\ \xi_{0} & \mbox{coupling-effect parameter} \\ \eta & \mbox{coupling-effect parameter} \\ \theta & \mbox{angle of crack model at the crack tip} \\ \theta_{L} & \mbox{occupancy of lattice sites} \\ \theta_{T} & \mbox{occupancy of trap sites} \\ v & \mbox{Poisson's ratio} \\ \xi & \mbox{coupling-effect parameter} \\ \rho & \mbox{material density, (kg m^{-3})} \\ \sigma_{h} & \mbox{hydrostatic stress, (MPa)} \\ \sigma_{0} & \mbox{initial yield strength, (MPa)} \end{array}$		hydrogen effect
effect δ_{y1} plastic-zone width along y-axis with hydroger effect δ_{θ} plastic-zone width along θ -axis δ_{r} plastic-zone width along r-axis ϵ_{p} equivalent plastic strain ϵ_{0} initial yield strain ζ coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip θ_{L} occupancy of lattice sites θ_{T} occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_{h} hydrostatic stress, (MPa) σ_{0} initial yield strength, (MPa)	δ_{x1}	plastic-zone width along x-axis with hydrogen
$\begin{array}{lll} \delta_{y_1} & \text{plastic-zone width along y-axis with hydroger} \\ & \text{effect} \\ \delta_{\theta} & \text{plastic-zone width along θ-axis} \\ \delta_r & \text{plastic-zone width along r-axis} \\ \epsilon_p & \text{equivalent plastic strain} \\ \epsilon_0 & \text{initial yield strain} \\ \zeta & \text{coupling-effect parameter} \\ \eta & \text{coupling-effect parameter} \\ \theta & \text{angle of crack model at the crack tip} \\ \theta_L & \text{occupancy of lattice sites} \\ \theta_T & \text{occupancy of trap sites} \\ v & \text{Poisson's ratio} \\ \xi & \text{coupling-effect parameter} \\ \rho & \text{material density, (kg m^{-3})} \\ \sigma_h & \text{hydrostatic stress, (MPa)} \\ \sigma_0 & \text{initial yield strength, (MPa)} \\ \end{array}$		effect
effect δ_{θ} plastic-zone width along θ -axis δ_r plastic-zone width along r -axis ϵ_p equivalent plastic strain ϵ_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip θ_L occupancy of lattice sites θ_T occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_0 initial yield strength, (MPa)	δ_{y1}	plastic-zone width along y-axis with hydrogen
		effect
$\begin{array}{ll} \delta_r & \mbox{plastic-zone width along r-axis} \\ \epsilon_p & \mbox{equivalent plastic strain} \\ \epsilon_0 & \mbox{initial yield strain} \\ \zeta & \mbox{coupling-effect parameter} \\ \eta & \mbox{coupling-effect parameter} \\ \theta & \mbox{angle of crack model at the crack tip} \\ \theta_L & \mbox{occupancy of lattice sites} \\ \theta_T & \mbox{occupancy of trap sites} \\ \nu & \mbox{Poisson's ratio} \\ \xi & \mbox{coupling-effect parameter} \\ \rho & \mbox{material density, (kg m^{-3})} \\ \sigma_h & \mbox{hydrostatic stress, (MPa)} \\ \sigma_0 & \mbox{initial yield strength, (MPa)} \end{array}$	$\delta_ heta$	plastic-zone width along θ -axis
$\epsilon_{\rm p}$ equivalent plastic strain ϵ_0 initial yield strain ζ coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip $\theta_{\rm L}$ occupancy of lattice sites $\theta_{\rm T}$ occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) $\sigma_{\rm h}$ hydrostatic stress, (MPa) σ_0 initial yield strength, (MPa)	δ_r	plastic-zone width along r-axis
	ε_{p}	equivalent plastic strain
ζ coupling-effect parameter η coupling-effect parameter θ angle of crack model at the crack tip θ_L occupancy of lattice sites θ_T occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_0 initial yield strength, (MPa)	ε_0	initial yield strain
η coupling-effect parameter θ angle of crack model at the crack tip θ_L occupancy of lattice sites θ_T occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_Q initial yield strength, (MPa)	ζ	coupling-effect parameter
θangle of crack model at the crack tip $θ_L$ occupancy of lattice sites $θ_T$ occupancy of trap sites v Poisson's ratio $ξ$ coupling-effect parameter $ρ$ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_Y yield strength, (MPa) σ_0 initial yield strength, (MPa)	η	coupling-effect parameter
θ_L occupancy of lattice sites θ_T occupancy of trap sites v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) σ_h hydrostatic stress, (MPa) σ_Y yield strength, (MPa) σ_0 initial yield strength, (MPa)	θ	angle of crack model at the crack tip
$ θ_T $ occupancy of trap sitesvPoisson's ratioξcoupling-effect parameterρmaterial density, (kg m ⁻³) $ σ_h $ hydrostatic stress, (MPa) $ σ_Y $ yield strength, (MPa) $ σ_0 $ initial yield strength, (MPa)	$\theta_{\rm L}$	occupancy of lattice sites
v Poisson's ratio ξ coupling-effect parameter ρ material density, (kg m ⁻³) $\sigma_{\rm h}$ hydrostatic stress, (MPa) $\sigma_{\rm Y}$ yield strength, (MPa) σ_0 initial yield strength, (MPa)	θ_{T}	occupancy of trap sites
	ν	Poisson's ratio
$ \begin{array}{ll} \rho & \text{material density, (kg m ^{-})} \\ \sigma_{\rm h} & \text{hydrostatic stress, (MPa)} \\ \sigma_{\rm Y} & \text{yield strength, (MPa)} \\ \sigma_{\rm 0} & \text{initial yield strength, (MPa)} \end{array} $	ξ	coupling-effect parameter
$\sigma_{\rm h}$ hydrostatic stress, (MPa) $\sigma_{\rm Y}$ yield strength, (MPa) σ_0 initial yield strength, (MPa)	ρ	material density, (kg m ⁻²)
$\sigma_{\rm Y}$ yield strength, (MPa) σ_0 initial yield strength, (MPa)	$\sigma_{ m h}$	nyarostatic stress, (MPa)
σ_0 initial yield strength, (MPa)	$\sigma_{ m Y}$	yield strength, (MPa)
	σ_0	initial yield strength, (MPa)

From the viewpoint of ductile—brittle transition in a hydrogen environment, the formation of brittle striation as a result of transgranular-crack propagation was reported in single crystalline Fe—Si [5] and commercial polycrystalline ferritic steels [4] which have a bcc crystal structure. Although transgranular-crack propagation was observed to show a brittle-like feature on the fracture surface, the propagation path was not along any identical crystallographic planes such as $\{110\}_{\alpha}$ for cleavage fracture [5]. Instead, Nishikawa et al. [6] proposed a ductile propagation mechanism in terms of the formation and coalescence of microvoids [7] associated with HELP [8–10] to explain the propagation of brittle-like cracks. This model could explain the brittle-like fractographic feature as well as the acceleration of the crack propagation rate. Therefore, we assume that the main factors triggering brittle-like fatigue-crack propagation are the extents of plastic strain and hydrogen localizations, which promote the HELP effect near a crack tip. Based on this assumption, a method for predicting the transition in crack-propagation mode was examined in this study.

Up to the present time, the effect of hydrogen on mechanical properties has been analyzed by the finite-element method (FEM) [11-15] or molecular dynamics (MD) [16]. FEM can be used to calculate the relatively macro- or mesoscopic distributions of plastic strain and hydrogen at a crack tip; however, it cannot describe the dislocation slip [17] and inhomogeneous distribution of hydrogen around dislocations. On the other hand, MD has been used to clarify the microscopic behavior [16] and fracture criterion [18] in a hydrogen environment, although MD has a disadvantage regarding atomic-scale analysis because of the limit on the number of atoms in a model. Hence, the selection of the method of simulation is critical to the development of an accurate model of the real hydrogen effect on an identical scale. When a plastic zone needs to be analyzed with the effect of stressassisted hydrogen diffusion near a crack tip, mesoscopic to macroscopic scale analysis, namely FEM, is considered an appropriate approach [11-15]. More specifically, the ductile-brittle transition noted in this study requires a FEM-scale analysis that would elucidate the hydrogen-related factors on a scale of 30.0 μ m (plastic-zone size on steels at $K_{\rm I}$ = 40.0 MPa $m^{1/2})$ to 150 mm (the distance at which the displacement is not affected by the plastic zone at a crack tip): hydrogen distribution, plastic-zone size, plastic strain distribution, and coordination state of hydrogen such as dislocations. FEM has been successfully applied to analysis of the plastic zone with hydrogen diffusion near a crack tip [11–15]. However, we noticed a remaining issue in terms of this plastic-zone analysis, namely, simulation of the decrease in plastic-zone size in the loading direction, which plays an important role in the HELP effect. We expect a simulation of a localized plastic zone would allow us to precisely estimate the transition condition and fatigue life.

We focused on the effects of hydrogen on plastic deformation and determining a comparison parameter for solving the remaining issue of plastic-zone size. Here, the yield strength and work-hardening coefficient are considered to be mechanical factors that dominate the plastic-zone evolution. In particular, the effect of the work-hardening coefficient has never been introduced to simulations of the HELP phenomenon. Additionally, based on the propagation mechanisms of ductile and brittle-like cracks, we compared the plastic-zone size by using a new parameter, a normal component of the crack-tip plastic strain in the direction of remote stress to determine the transition of the fatigue-crack propagation mode as shown in Fig. 1(b). By coupling FEM with a simulation of stress-induced hydrogen diffusion in this study, we Download English Version:

https://daneshyari.com/en/article/1274875

Download Persian Version:

https://daneshyari.com/article/1274875

Daneshyari.com