

Available online at www.sciencedirect.com

International Journal of Hydrogen Energy 31 (2006) 1079-1090

www.elsevier.com/locate/ijhydene

Theoretical analysis of a pure hydrogen production separation plant for fuel cells dynamical applications

L. Capobianco^{a,*}, Z. Del Prete^a, P. Schiavetti^a, V. Violante^b

^aDepartment of Mechanics and Aeronautics, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy ^bENEA, Frascati Research Centre, Via Enrico Fermi 45, 00044 Frascati, Rome, Italy

Received 30 November 2005; received in revised form 17 January 2006; accepted 10 February 2006 Available online 30 March 2006

Abstract

This article proposes a mathematical model and develops the numerical simulation of a single stage hydrogen production–separation process during transient behaviour, suited for proton exchange membrane (PEM) fuel cell (FC) applications. Methanol reforming process is performed in a commercial catalytic membrane reactor (CMR), filled with a commercial ZnO–CuO, alumina supported catalyst. The permeate hydrogen is accumulated in a reservoir volume (buffer) connected to the permeate side. This configuration was studied in order to avoid the feed back control of the reactor feeding, even when transient power loads to the cell are applied. By numerical simulation, we verified that the system comprised by the CMR and the PEM, with an appropriate constant reactor feeding flow, is always self-sustaining so that the hydrogen demand by the FC can be satisfied at all power regimes. The achievement of this goal was obtained by redistribution of the hydrogen produced in the reactor temperature and pressure, are needed, therefore, the configuration proposed here results in a simplified approach to the control strategy for the entire system. We apply the theoretical analysis to a pilot plant designed and assembled at the University of Rome "La Sapienza", in order to verify its functional parameters and the theoretical performance of the system before its real operation. © 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Keywords: Fuel cells; Catalytic membrane reactor; Buffer; Methanol steam reforming

0. Introduction

In the recent years, an extensive work has been done concerning the use of proton exchange membrane (PEM) fuel cells (FCs) to clean energy and automotive applications. For the latter one, the main problem is still the safe and inexpensive storage of hydrogen on board. Therefore, many authors [1-7], instead of

fax: +39 06 4881759.

storage, focused on efficient "on board" production methods, by means of liquid and gaseous fuels reactions as: water gas shift of carbon monoxide, steam reforming of methane, steam reforming coupled by partial oxidation of a liquid fuel, thermal cracking of hydrocarbons. Moreover, the use of PEM FCs implies a number of problems, like purification and humidification of hydrogen feeding and control of gases pressure [8–12]. In this study, we examine by numerical simulations, the performance of an H₂ feeding system constituted by a catalytic membrane reactor (CMR) [10,13–15,33,35], by which the production and purification steps are integrated. CMRs are high efficiency devices

0360-3199/30.00 © 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.ijhydene.2006.02.013

^{*} Corresponding author. Tel.: +390644585585;

E-mail address: luigi.capobianco@uniroma1.it (L. Capobianco).

Nomenclature

$A_{\rm m}$	total permeating membrane area, m ²
С	concentration in gas phase, mol/m^3
<i>c</i> ₀	reference concentration, $(=P_0/(RT_0))$
C_{SI}^T, C_{SIa}^T	catalyst surface concentration of site
51 514	types I or Ia $(I = 1, 2)$, mol/m ²
D	reactor diameter, m
D_{m}	membrane diameter, m
Ε	activation energy, kJ/(mol K)
F	molar flow rate, mol/s
F_0	reference molar flow rate,
~	$(=(v_0c_0V_b)/L)$
F	dimensionless molar flow rate, $(=F/F_0)$
J	molar flux, mol/m^2 s
$\stackrel{J_0}{\sim}$	reference molar flux, $(=F_0/A_m)$
J	dimensionless molar flux, $(=J/J_0)$
$k_{\rm D}$	rate constant for methanol
	decomposition, m ² /s mol
$k_{\rm R}$	rate constant for methanol
_	reforming, m ² /s mol
$k_{ m W}$	rate constant for water gas shift reaction,
	m ² /s mol
$K_{\rm D}$	equilibrium constant for methanol
17	decomposition, 1/bar ²
$K_{\rm R}$	equilibrium constant for methanol
V	reforming, 1/bar ²
KW V*	equilibrium constant for water gas shift
K ⁺	adsorption constant, 1/baros
	membranes total length m
$L_{\rm m}$	number of membranes
n.	number of memoranes
(rs)	partial pressure of species <i>i</i> , bar
p_{H_2}	retentate side partial pressure of hydro-
(ps)	gen, ra
$p_{\mathrm{H}_2}^{\mathrm{q}}$	permeate side partial pressure of hydro-
ת	gen, Pa
P D	total pressure, bar
P_0	coll never load W
$P_{\rm C}$	cell power load, w
Q/0	overall rate of consumption of species <i>i</i>
r_i	mol/m^3 s
r 14	rate of reaction M bar/ m^3 s
R R	rate of reaction M , $\partial a / m_{cat} s$
R'	gas constant in permeability expression
R	I/mol K
R;	rate of reaction <i>i</i> . mol/m ³ s
S	surface area. m^2/gr
Т	temperature, K
T_0	reference temperature, K
	-

v	molar mean velocity, m/s	
v_0	reference velocity, m/s	
V	dimensionless velocity, $(=v/v_0)$	
$V_{ m r}$	reactor volume, m ³	
$V_{\rm b}$	buffer volume, m ³	
X	dimensionless length, (z/L)	
Уi	molar fraction of species <i>i</i>	
Y	dimensionless molar fraction,	
	$(=y_i/y_{i0})$	
Z	reactor's axial coordinate, m	
Greek letters		
α	membrane to reactor length ratio	
	$(=L_{\rm m}/L)$	
β	permeating zone surface to volume	
	ratio $(=(4N_{\rm m}\pi D_{\rm m})/(D^2 - N_{\rm m}D_{\rm m}^2))$	
γ	hydrogen utilization factor	
	$(=F_{H_2}^{(\text{perm})}/(F_{H_2}^{(\text{prem})}+F_{H_2}^{(\text{out})}))$	
δ	membrane thickness, m	
$\Delta H_{ m R}$	heat of reaction, kJ/mol	
ΔH_c	high heating value of hydrogen, kJ/mol	
3	bed void fraction, $m_{void}^3/m_{reactor}^3$	
η_{c}	cell efficiency	
ν	stoichiometric coefficient	
П	dimensionless buffer pressure	
	$(=P_{\rm b}/P_{\rm 0})$	
φ_i	$(=((1-\varepsilon)/\varepsilon)r_i - U(z-L_1)(\beta/\varepsilon)J_{\mathrm{H}_2})$	
φ_t	$(=L\sum_{i}^{N_{c}}\varphi_{i})$	
Φ_i	$(=L\varphi_i/(c_0v_0y_{i0}))$	
Φ_t	$(=L\varphi_t/(c_0v_0))$	
$ ho_{\rm cat}$	catalyst density, kg/m_{cat}^3	
τ	dimensionless time $(=v_0t/L)$	
ω	frequency, Hz	
Superscripts		

С	cell
in	reactor inlet conditions
out	reactor outlet conditions
perm	permeating

Subscripts

a	CH ₃ OH
b	buffer
d	decomposition
m	membrane
cat	catalyst
0	reference value
r	CO ₂ , reforming
S	H ₂
W	CO, water gas shift

Download English Version:

https://daneshyari.com/en/article/1275412

Download Persian Version:

https://daneshyari.com/article/1275412

Daneshyari.com