

Sustainable convergence of electricity and transport sectors in the context of a hydrogen economy

Amir H. Hajimiragha^{a,*}, Claudio A. Cañizares^a, Michael W. Fowler^b, Somayeh Moazeni^c, Ali Elkamel^b, Steven Wong^a

^a Power and Energy Systems Group, Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

^bDepartment of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

^c Cheriton School of Computer Science, Faculty of Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

ARTICLE INFO

Article history: Received 25 October 2010 Received in revised form 10 February 2011 Accepted 12 February 2011 Available online 3 April 2011

Keywords: Hydrogen economy Fuel cell vehicle Transportation Electric grid Uncertainty Robust optimization

ABSTRACT

This paper analyzes the electricity and transport sectors within a single integrated framework and presents the capabilities of this integrated approach to realize an environmentally and economically sustainable transport sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model for the transition to FCVs is developed, considering the constraints of both electricity and transport sectors. This model is finally applied to the real case of Ontario, Canada to determine the Ontario's grid potential to support these vehicles in the transport sector for a planning horizon ending in 2025. With a reasonable trade-off between optimality and conservatism, it is found that more than 170,000 FCVs can be introduced into Ontario's transport sector by 2025 without jeopardizing the reliability of the system or any additional grid investments such as new power generation and transmission installations.

Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

The transport sector is one of the largest and fastest growing contributors to both energy demand and greenhouse gases; for example, in Canada, the transport sector represents almost 35% of the total energy demand and is the second highest source of greenhouse gas emissions [1,2]. In view of these facts and the challenges associated with the supply of oil, the issue of alternative fuels for meeting the future energy demand of the transport sector has gained notable attention.

Abbreviations: AFV, alternative-fuel vehicle; FCV, fuel cell vehicle; GV, gasoline vehicle; HHV, higher heating value; HOEP, hourly ontario energy price; HPP, hydrogen production plant; IESO, independent electricity system operator; LDV, light-duty vehicle; MILP, mixed integer linear programming; NE, northeast; NW, northwest; SCC, social cost of carbon; SW, southwest.

Corresponding author. Tel.: +1 519 888 4567x38036; fax: +1 519 746 3077.

E-mail addresses: ahajimir@uwaterloo.ca (A.H. Hajimiragha), ccanizares@uwaterloo.ca (C.A. Cañizares), mfowler@cape.uwaterloo.ca (M.W. Fowler), smoazeni@math.uwaterloo.ca (S. Moazeni), aelkamel@uwaterloo.ca (A. Elkamel), sm2wong@engmail.uwaterloo.ca (S. Wong).

^{0360-3199/\$ –} see front matter Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.ijhydene.2011.02.070

	Nomen	clature	LF	linking factor, ton/day MW
			LT _{cab}	lifetime of cab, year
	Indices		LT _{tube}	lifetime of tube trailer, year
	C	index for vehicle type	М	number of Monte Carlo simulations
	е	index for constraint under uncertainty	Nldv _{iy}	total number of light-duty vehicles
	i, j	index for zones	OCy	operation cost of compressed gas truck, CAD/km
	1	index for voltage angle block	p_e	threshold probability of constraint e
	m	index for Monte Carlo simulation	P_{e_y}	total base-load electricity demand, MW
	υ	index for uncertain parameter	$P_{e_{iy}}^{\tau}$	zonal base-load electricity demand, MW
	y, k	index for year	$\overline{P_{g}}_{iy}$	maximum available generation power, MW
	τ, ω	index for time period	P _{giy}	lower bound of zonal generation power, MW
	ω_1	index for the time period corresponding to	Pgaiy	maximum capacity of non-polluting generation
		weekday hours		resources, MW
	ω_2	index for the time period corresponding to	$\overline{P_{gb}}_{iy}$	maximum capacity of non-polluting plus CHP
		weekend hours		generation resources, MW
	Søte		P _{hpp} _{iy}	maximum size of HPPs, MW
	F	set of constraints subject to uncertainty	P _{miy}	upper bound of imported power, MW
	L	set of total voltage angle blocks: $L = \begin{cases} 1 \\ 1 \end{cases}$	P _{miy}	lower bound of imported power, MW
	La	set of voltage angle blocks: $L_{1} = \{1, \dots, L\}$	$\overline{P_{x_{iy}}}$	upper bound of exported power, MW
	L ₂	set of voltage angle blocks; $L_2 = \{2,, L_{-1}\}$	P _{x iv}	lower bound of exported power, MW
	L3 I.	set of voltage angle blocks; $L_3 = \{2, \dots, L\}$	<u>Pd</u>	maximum capacity of transmission corridor for
	11	set of uncertainty	1 orijy	direct power flow. MW
	V	set of total uncertain parameters	\overline{Pr}_{iiv}	maximum capacity of transmission corridor for
	V.	set of uncertain parameters in constraint e	ijy	reverse power flow. MW
	VT	set of different types of light-duty vehicles	PS	planning span, year
	x	set of mixed integer feasible solution	Sau	scaled deviation
	v	set of planning years	Scah	salvage value of cab (% of initial cost)
	Y.	set of planning years excluding the first year	Stube	salvage value of tube trailer (% of initial cost)
	Z	set of zones	SC _{CO} , D	social cost of CO_2 emission in the population area.
	Z*	set of hydrogen transfer corridors	0021	CAD/ton
	Ψ	set of time periods: $\Psi = \{\omega_1, \omega_2\}$	SC _{CO2} g	social cost of CO ₂ emission of generation, CAD/ton
	Ω	set of transmission lines	TH	upper bound of transferred hydrogen, ton/day
			TH	lower bound of transferred hydrogen, ton/day
	Paramete	ers	VSc	percent share of vehicle
	AM	annual mileage, km	y ₁	first year of the planning horizon
	b _{ijy}	line susceptance, p.u	$\alpha_{ijy}(l)$	slope of the lth block of voltage angle, MW/rad
	CC _{cab}	capital cost of cab, CAD.	Γ_e	budget of uncertainty
	CC _{tube}	capital cost of tube trailers, CAD	$\Delta \delta_y$	upper bound of each angle block, rad
	Cfy	correction factor	$\Delta \eta_{hpp}$	efficiency improvement of the HPPs over the
	CF _{hpp}	average capacity factor of HPPs, %		planning horizon
	$\frac{Cnpp_{iy}}{CT}$	local required capacity of HPPs, MW	$\overline{\Delta P_{hpp}}_{iv}$	maximum annual development of HPPs, MW
	CI	top	ϵ_a, ϵ_b	small positive numbers
	d	com	ϵ_{t}	constraint violation probability, %
	u _{ij} DP	discount rate %	η^b_{hpp}	base efficiency of HPPs at the beginning of the
	Ess	constant value of CO ₂ emissions from hurning		planning horizon
	LCO2	gasoline kg/liter	λ	a random parameter following a normal
	FR.	emission rate of CHP plants ton/MWh		distribution with zero mean and unit standard
	FR ,	emission rate of coal plants, ton/MWh		deviation
	FF	fuel economy of the fuel cell vehicle km/kg	$\overline{\mu}_{y}$	maximum possible FCV penetration, %
	FE	fuel economy of the gasoline vehicle, km/kg	π_y	internal or hourly Ontario energy price, CAD/
		line conductance, p.u.		MWh
	h	number of off-peak hours	π_{m_y}	import electricity price, CAD/MWh
	h	number of HPPs operation hours in weekdays	π_{x_y}	export electricity price, CAD/MWh
	h	number of HPPs operation hours in weekends	ρ	size of the relative perturbation, %
	H	last year of the planning horizon	Variable	S
	HHV	higher heating value of hydrogen, kWh/kg	FFiv	feasibility factor
1		······································	.,	-

total number of voltage angle blocks

L

Download English Version:

https://daneshyari.com/en/article/1275993

Download Persian Version:

https://daneshyari.com/article/1275993

Daneshyari.com