

Highly efficient TiO₂ nanotube photocatalyst for simultaneous hydrogen production and copper removal from water

Shiping Xu, Jiawei Ng, Alan Jianhong Du, Jincheng Liu, Darren Delai Sun*

School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

ARTICLE INFO

Article history: Received 15 December 2010 Received in revised form 7 March 2011 Accepted 8 March 2011 Available online 6 April 2011

Keywords: TiO₂ nanotube Hydrogen production Copper removal

ABSTRACT

1-D mesoporous TiO₂ nanotube (TNT) with large BET surface area was successfully synthesized by a hydrothermal-calcination process, and employed for simultaneous photocatalytic H₂ production and Cu²⁺ removal from water. Cu²⁺, across a wide concentration range of 8–800 ppm, was removed rapidly from water under irradiation. The removed Cu²⁺ then combined with TNT to produce efficient Cu incorporated TNT (Cu-TNT) photocatalyst for H₂ production. Average H₂ generation rate recorded across a 4 h reaction was between 15.7 and 40.2 mmol h⁻¹ g⁻¹_{catalyst}, depending on initial Cu²⁺/Ti ratio in solution, which was optimized at 10 atom%. In addition, reduction process of Cu²⁺ was also a critical factor in governing H₂ evolution. In comparison with P25, its large surface area and 1-D tubular structure endowed TNT with higher photocatalytic activity in both Cu²⁺ removal and H₂ production.

Copyright ${\small ©}$ 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Massive global utilization of fossil fuels as energy source has exacerbated worldwide concern on global warming and depletion of natural resources. H₂ has been regarded as an excellent alternative, owing to its high energy content, zero emission of green house gases, and ease of storage and distribution. Currently, majority of H2 demands are met by steam reforming of natural gases, however this process does not mitigate dependence on fossil fuels, and even produces green house gases. Ever since Fujishima and Honda reported photoelectrochemical water splitting at a TiO₂ electrode, direct photo-splitting of water has been recognized as a promising method for renewable H_2 production [1]. However, H₂ generation efficiency over bare TiO₂ is low, mainly due to the fast recombination of electron/hole pairs [2]. Recently, Cu incorporated TiO₂ (Cu-TiO₂) was reported to be cost-effective and possess excellent H₂ generation activity under sacrificial conditions [3-9]. Several Cu species (Cu/

Cu₂O/CuO) have been reported to be active [10-13], and various facile methods, like in-situ photo-deposition, are able to produce efficient Cu–TiO₂ [14], underlining the potential of Cu–TiO₂ in photocatalytic H₂ production.

Cu is widely used in electrical industries, transportation, industrial machinery and military supplies, leading to fast depletion of limited Cu reserves and severe contamination of industrial wastewaters [15]. Thus, waste metal recovery from water can contribute towards resource conservation and mitigation of metal pollution. Common methods employed for Cu recovery today include chemical or electrolytic precipitation, activated carbon adsorption, ion exchange and membrane separation, but they are either too costly or inefficient for low concentration levels [16]. Recently, photocatalytic reduction of Cu^{2+} over TiO₂ has been investigated [17–19], and shows lower cost with higher efficiency. Moreover, this method is also applicable in fabrication of Cu deposited TiO₂ photocatalyst, which could potentially be an active photocatalyst for H₂ production. However to date,

^{*} Corresponding author. Tel.: +65 67906273; fax: +65 67910676. E-mail address: DDSun@ntu.edu.sg (D.D. Sun).

^{0360-3199/\$ –} see front matter Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.ijhydene.2011.03.047

major reports about ${\rm Cu}^{2+}$ reduction over ${\rm TiO}_2$ have merely focused on ${\rm Cu}^{2+}$ removal, and no study about simultaneous H_2 production with ${\rm Cu}^{2+}$ removal has been reported.

1-D TiO₂ nanotube has attracted considerable attention since its discovery by Kasuga et al. [20] using a simple hydrothermal treatment of TiO₂ powder in NaOH aqueous solution. Many efforts have been devoted into understanding the formation mechanism [21], optimizing fabrication conditions [22], and studying the properties of TNT [23]. It is known that TNT possesses large specific surface area, mesoporous structure, and efficient electron conductivity [24]. TNT has exhibited immense potential in a wide variety of applications, ranging from environmental purification [25,26], photocatalysis [27], energy storage [28], and gas sensing [29], however little is known about its performance in photocatalytic H₂ production. Furthermore, no report about utilization of TNT in simultaneous metal ions removal and H₂ production could be found in open literature. Herein we report for the first time, an effective Cu²⁺ removal and H₂ production being simultaneously achieved over highly efficient TNT. This may offer a potential and meritorious solution for treatment of metal containing wastewater with concurrent H₂ production.

In this study, TNT was successfully fabricated by a hydrothermal reaction followed by calcination process, and then employed in photocatalytic reaction to evaluate its performance in simultaneous Cu^{2+} removal and H_2 generation. The experimental results revealed that Cu^{2+} can be recovered readily from water by TNT to produce a highly active Cu-TNT photocatalyst for H_2 production, and H_2 evolution was largely governed by Cu^{2+} reduction process. In addition, initial $Cu^{2+}/$ Ti ratio was proved to be critical in H_2 production, and its effect was also discussed in this paper.

2. Experimental

2.1. Synthesis and characterization of TNT

TNT was fabricated via a typical hydrothermal method followed by calcination process. Degussa P25 (Germany) powder was added to 10 M NaOH (Merck, AR) aqueous solution, followed by an ultrasonic process and thorough mixing. The homogeneous suspension was then hydrothermally treated in a Teflon-lined autoclave at 150 °C for 48 h. The obtained precipitate was first washed with de-ionized water (Milli-Q, ultrapure), and then dispersed under continuous stirring into 0.1 M HCl (Merck, AR) for 24 h. The acid treatment was repeated for 3 times, and the product was washed thoroughly with de-ionized water until the resulting pH was neutral. After drying in a freeze dryer, the product was calcined at 400 °C for 2 h to obtain the final TNT photocatalyst.

X-ray diffraction (XRD) pattern of the fabricated TNT was obtained using a Bruker D8 Advance X-ray diffractometer with monochromated high-intensity Cu K α radiation ($\lambda = 1.5418$ Å). Element composition of the photocatalyst was analyzed using an energy dispersive X-ray spectrometer (EDS) attached to a scanning electron microscope (Jeol JSM-6360). Sample morphology was studied using a field-emission scanning electron microscope (FESEM, Jeol JSM-6340F), and a high-resolution transmission electron microscope (HRTEM, Jeol

JEM-2010) at 200 kV. BET surface area and pore size distribution were determined using a Micromeritics ASAP 2010 system. Diffuse-reflectance spectra were recorded by a Thermo Scientific Evolution 300 UV–visible spectrophotometer, equipped with an integration sphere. X-ray photoelectron spectroscopy (XPS) analysis was carried out in an ultrahigh vacuum chamber with a base pressure below 2.66×10^{-7} Pa at room temperature. Photoemission spectra were recorded by a Kratos Axis Ultra spectrometer equipped with standard monochromatic Al K α excitation source ($h\nu = 1486.71 \text{ eV}$). All binding energies were referenced to C 1s at 284.8 eV.

2.2. Photocatalytic reaction

The photocatalytic reaction was performed in an inner-irradiation type Pyrex reactor (volume: 270 ml) equipped with a 400 W high pressure Hg lamp (Riko, UVL-400HA) as the light source. To maintain a constant reactor temperature of 25 °C, a quartz water jacket, which was cooled by recycled water, was utilized to cover the lamp. Cu(NO₃)₂ (Merck, GR) was first dissolved in 10 volume% methanol (Fisher, HPLC) water mixture with Cu²⁺ concentrations of 8, 80, 400 and 800 ppm, and TNT was then dispersed into the above solution at a dosage of 1 g L^{-1} . Cu/Ti atom ratio was controlled at 1%, 10%, 50% and 100%, and the corresponding results were respectively denoted as TNT-1%, TNT-10%, TNT-50% and TNT-100%. A magnetic stirrer was placed at the bottom of the reactor to homogenize the suspension throughout the reaction. Prior to irradiation, the photocatalyst suspension was de-aerated thoroughly for 30 min by nitrogen gas purging.

To investigate the competition of Cu^{2+} reduction and effect of re-oxidation of reduced Cu species on H₂ generation, control experiments were carried out as follows: after normal TNT-10% reaction for 2 h, the fabricated Cu-TNT was collected and washed thoroughly with de-ionized water, and then dispersed in fresh methanol solution with (or without) presence of Cu^{2+} ($Cu^{2+}/Ti = 10$ atom%) prior to the photocatalytic reactions.

To evaluate the activity of TNT, P25, with an initial Cu^{2+}/Ti ratio of 10%, was chosen as a benchmark, and denoted as P25-10%. Control experiment for H₂ generation over bare TNT was also conducted without addition of Cu precursor.

Cu²⁺ concentration in solution was quantified at stated time intervals by an inductively coupled plasma emission spectroscopy (ICP, Perkin Elmer Optima 2000DV). Gas produced via the photocatalytic reaction was analyzed using an off-line TCD-type gas chromatography (Agilent 7890A, HP-PLOT MoleSieve/5A). pH value of the solution was determined by a Horiba F-53 pH meter.

3. Results and discussion

3.1. Characterization of TNT

XRD pattern and EDS spectrum of the fabricated TNT are shown in Fig. 1. XRD pattern of as-prepared TNT exhibited characteristic features of anatase TiO_2 (JCPDS 21-1272). No vague peaks associated with other crystal structures were observed. In the EDS spectrum, peaks of C, O, Au and Ti were Download English Version:

https://daneshyari.com/en/article/1276011

Download Persian Version:

https://daneshyari.com/article/1276011

Daneshyari.com