

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Metal aluminum amides for hydrogen storage – Crystal structure studies

Satoshi Hino ^a, Hilde Grove ^a, Takayuki Ichikawa ^b, Yoshitsugu Kojima ^b, Magnus H. Sørby ^{a,*}, Bjørn C. Hauback ^a

^a Physics Department, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller, Norway ^b Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan

ARTICLE INFO

Article history: Received 18 December 2014 Accepted 1 May 2015 Available online 27 May 2015

Keywords: Hydrogen storage materials Powder neutron diffraction Powder X-ray diffraction Ball-milling

ABSTRACT

Crystal structure of metal aluminum amides has been investigated by synchrotron radiation powder X-ray diffraction (SR-PXD) and powder neutron diffraction (PND). Alkali and alkaline-earth metal aluminum amides $M[Al(NH_2)_4]_x$ desorb ammonia during thermal decomposition and have recently been studied as possible hydrogen storage system by making composites with metal hydrides. In this work, deuterated metal aluminum amides $M[Al(ND_2)_4]_x$ with M = Li, Na, K, Mg and Ca were synthesized by ball-milling of M (or MD_x) + Al (or AlD₃) under liquid ND₃. The crystal structures of MAl(ND₂)₄ phases with M = Li, Na, K (α -phase) have been refined by simultaneous Rietveld refinement using PND and SR-PXD data. Structure determination was successful for β -KAl(ND₂)₄ and Ca $[Al(ND_2)_4]_2$. The structures are composed of $[Al(ND_2)_4]^-$ tetrahedra and M cations, and the unit cells are: M = Li; monoclinic space group $P2_1/n$, a = 9.5075(3) Å, b = 7.3610(2) Å, c = 7.4076(2) Å, β = 90.165(3)°, Na; monoclinic space group P2₁/c, a = 7.3317(9) Å, b = 6.0447(8) Å, c = 13.151(2) Å, $\beta = 94.110(9)^{\circ}$, K (α -phase); orthorhombic space group C222₁, a = 10.17258(7) Å, b = 5.78762(5) Å, c = 9.98651(7) Å, K (β -phase); orthorhombic space group Pnma, a = 11.4183(4) Å, b = 8.8588(2) Å, c = 6.1696(2) Å, and Ca; monoclinic space group Pc, a = 6.4321(2) Å, b = 6.4377(2) Å, c = 12.2939(3) Å, $\beta = 90.612(2)^{\circ}$. The structural features of metal aluminum amides have been compared with the corresponding alanates. Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

right © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Utilization of hydrogen as an energy carrier is one of the key challenges in developing a carbon-neutral energy economy. Compact and safe way to store hydrogen is necessary [1], and one of the candidates is hydrogen storage in solid materials which possess high volumetric hydrogen capacity. Complex hydrides, e.g., metal alanates $M(AlH_4)_x$ where hydrogen is covalently bonded with Al to make complex anion, have high gravimetric hydrogen capacity and have been studied as one of the most promising hydrogen storage materials [2]. For example, LiAlH₄ can store 10.5 mass% hydrogen, however the irreversibility of the hydrogen desorption reaction is challenging. NaAlH₄ with transition metal additives shows good

0360-3199/Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +47 6380 6000; fax: +47 6381 0920. E-mail address: magnuss@ife.no (M.H. Sørby).

http://dx.doi.org/10.1016/j.ijhydene.2015.05.012

Table 1 – Crystal structure data of metal aluminum amides and related compounds. Lattice constants (a, b, c and β), unit cell volume (V) and formula units per unit cell (Z). "*" denotes compounds where atomic positions have been reported. Estimated standard deviations are given in parentheses when reported.

Istinated standard deviations are given in parentices when reported.											
Compound	Space group	a/Å	b/Å	c/Å	β (°)	V/Å ³	Ζ	Ref.			
LiAl(NH ₂) ₄	P2 ₁ /n	9.478(1)	7.351(1)	7.398(1)	90.26(1)	519.39	4	[11]*			
NaAl(NH ₂) ₄	P21/c	7.328(2)	6.047(2)	13.151(3)	94.04(1)	581.3	4	[12]*			
Na ₂ Al(NH ₂) ₅	Cmma or Abm2	23.56	19.36	6.78	90	3092.5	16	[17]			
α -KAl(NH ₂) ₄	C222 ₁	10.00(1)	5.80(1)	10.14(1)	90	588.12	4	[13]*			
β -KAl(NH ₂) ₄	Pnma	11.37(1)	8.85(1)	6.146(6)	90	618.44	4	[10]			
RbAl(NH ₂) ₄	P4/n	7.406(4)	7.406(4)	5.386(4)	90	295.42	2	[14]*			
CsAl(NH ₂) ₄	P4/n	7.563(3)	7.563(3)	5.354(1)	90	306.24	2	[14]*			
Mg(Al(NH ₂) ₄) ₂	Hexagonal	12.1	12.1	7.95	90	1008.02	N/A	[5]			
Ca(Al(NH ₂) ₄) ₂	Monoclinic	12.27	6.44	6.43	90.7	508.05	N/A	[5]			
Ca(Al(NH ₂) ₄) ₂ ·NH ₃	I2/c	10.189(9)	9.897(11)	12.151(12)	98.60(15)	1211.54	4	[18]*			
CaAl(NH ₂) ₅	P4 ₂ 22	6.471(5)	6.471(5)	12.244(9)	90	512.70	4	[19]			
Sr(Al(NH ₂) ₄) ₂	P6 ₂ , P6 ₄ , P6 ₂ 22, or P6 ₄ 22	17.49(1)	17.49(1)	28.17(2)	90	7462.72	36	[15]			
Ba(Al(NH ₂) ₄) ₂ ·2NH ₃	R-3c	15.7370(17)	15.7370(17)	28.840(6)	90	6177.71	18	[16]*			

cyclability, however the practical reversible capacity is only around 4 wt% H [3].

Metal aluminum amides (tetra-amido-aluminates), M [Al(NH₂)₄]_x, consist of complex ion of Al tetrahedrally coordinated by four NH_2^- , $Al(NH_2)_4^-$ and balancing alkali or alkalineearth metal cations, M^{x+} . They can thus be regarded as metal alanates where the hydrogen atoms have been substituted by NH₂. The compounds desorb NH₃ during thermal decomposition and the NH₃ desorption properties have been investigated with temperature-programmed-desorption coupled with a mass spectrometer (TPD-MS), revealing that the main NH₃ release occurs in the range 50-150 °C for M $[Al(NH_2)_4]_x$ (M = Li, Na, K, Mg and Ca) [4,5]. Analogously to the amide-imide system [6], NH₃ desorption in metal aluminum amides can be replaced by H₂ desorption by making composites with alkali metal hydrides, therefore the compounds have recently been studied as hydrogen storage materials. The lithium amide-imide system desorbs ~6.5 mass% H₂ at 255 °C through the following reaction [6].

 $LiNH_2 + LiH \rightarrow Li_2NH + H_2$

For more unstable amides the H_2 desorption temperature is decreased, e.g., the composite LiH–LiAl(NH₂)₄ can desorb up to 6.2 mass% hydrogen at 130 °C [7].

The reactions between Al and solution of alkali metals (Li, Na, K, Rb and Cs) in liquid NH_3 result in single crystals of the alkali metal aluminum amides and the unit cell parameters of these compounds have been investigated by powder and single crystal diffraction [8–10]. The crystal structures of LiAl(NH_2)₄, NaAl(NH_2)₄, α -KAl(NH_2)₄, RbAl(NH_2)₄ and CsAl(NH_2)₄ have been

reported from single crystal X-ray diffraction measurements [11–14]. The structure models included hydrogen positions, but they are regarded as uncertain due to their low X-ray scattering power. The space groups and unit cell parameters of MAl(NH₂)₄ for M = Li, Na, α -K, Rb and Cs respectively, are P2₁/n, a = 9.478(1) Å, b = 7.351(1) Å, c = 7.398(1) Å, $\beta = 90.268(1)^{\circ}$; and $P2_1/c$, a = 7.328(2) Å, b = 6.047(2) Å, c = 13.151(3) Å, $\beta = 94.04^{\circ}$; and C222₁, a = 10.00(1) Å, b = 5.80(1) Å, c = 10.14(1) Å; and P4/n, a = 7.406(4) Å, c = 5.386(4) Å; and P4/n, a = 7.563(3) Å, c = 5.354(1) Å. The crystal structure data are summarized in Table 1 together with those of other known metal aluminum amides and related compounds. Brec and Rouxel [10] have reported the space group and unit cell parameters of β -KAl(NH₂)₄: Pnma, a = 11.37(1) Å, b = 8.85(1) Å, c = 6.146(6) Å but without atomic positions. Recently, a study on structures and bonding of alkali metal aluminum amides investigated by IR spectroscopy supported by DFT calculations has been reported [4]. For group 2 elements, the crystal structures of $Mg[Al(NH_2)_4]_2$ and Ca[Al(NH₂)₄]₂ are unknown except for their unit cell parameters: hexagonal (a = 12.10 Å and c = 7.95 Å) and monoclinic $(a = 12.27 \text{ Å}, b = 6.44 \text{ Å}, c = 6.43 \text{ Å}, and \beta = 90.7^{\circ})$ unit cells, respectively [5]. Furthermore Sr[Al(NH₂)₄]₂ and Ba[Al(NH₂)₄]₂ have been synthesized [15]. The unit cell parameters of Sr $[Al(NH_2)_4]_2$ were determined (hexagonal, a = 17.49(1) Å, c = 28.17(2) Å), but Ba[Al(NH₂)₄]₂ was unstable at ambient conditions without ammonia pressure. Recently, lowtemperature single crystal measurement has revealed the crystal structure of Ba(Al(NH₂)₄)₂·2NH₃ synthesized by an ammonothermal method [16].

In the present work, deuterated metal aluminum amides M $[Al(ND_2)_4]_x$, with M = Li, Na, K, Mg and Ca, were synthesized,

Table 2 — Summary of experimental conditions for the ball-milling to synthesize the metal aluminum amides.									
	Milled materials	Molar ratio	Milling atmosphere	Milling time ^a	Additional treatment				
LiAl(ND ₂) ₄	LiD + Al	1:1	Ar (1 MPa)	20 h	Annealing under liq. ND $_3$ at 100 $^\circ$ C for 2 weeks				
NaAl(ND ₂) ₄	$NaD + AlD_3$	1:1	Liq. ND₃	4 h	Kept for 1 week under liq. ND $_3$ at RT				
KAl(ND ₂) ₄	$\text{KD} + \text{AlD}_3$	1:1	Liq. ND₃	4 h	Kept for 1 week under liq. ND $_3$ at RT				
$Mg[Al(ND_2)_4]_2$	Mg + Al	1:2	Liq. ND3	8 h	Kept for 1 week under liq. ND_3 at RT				
$Ca[Al(ND_2)_4]_2$	$CaD_2 + Al$	1:2	Liq. ND ₃	10 h	Kept for 1 week under liq. ND_3 at RT				

^a Active milling time (without pauses).

Download English Version:

https://daneshyari.com/en/article/1278391

Download Persian Version:

https://daneshyari.com/article/1278391

Daneshyari.com