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ABSTRACT

The possibility of applying a catalytic membrane reactor (CMR) to SO; decomposition in a
low-temperature range was theoretically evaluated with the purpose of producing CO,-free
hydrogen in an Iodine—Sulfur thermochemical cycle. A one-dimensional, isothermal and
plug-flow model was developed for a cocurrent membrane reactor with selective perme-
ation from the reactant stream to the permeate stream. Simulation results have revealed
that CMRs can greatly reduce the reaction temperature for SO; decomposition from the
conventional 1200—1400 K to about 900 K. We predicted that porous inorganic membranes
with a high O, permeability and with selectivities of more than 50 for 0,/SO3 and less than
10 for 0O,/SO, had the potential to effectively improve SO; conversion. CMRs were simu-
lated to carry out SO; decomposition at different catalyst weights, reaction temperatures,

IS process and SO; feed flow rates as well as pressures in feed and permeate streams. SO; conversion
Simulation at 900 K was increased to 0.93 beyond the equilibrium conversion of 0.28 due to a shift in
thermodynamic equilibrium.
Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights
reserved.
" water, the Iodine—Sulfur thermochemical water-splitting
Introduction

cycle (IS process), which was initially proposed by General
Atomics, is considered an efficient, massive and CO,-free

With the simultaneous growth of the demand of global energy
and of urgent concerns for reduction of greenhouse gas
emissions, hydrogen has become a promising energy carrier
[1]. Currently, hydrogen is derived from nonrenewable natural
gas and petroleum, but could in principle be generated from
renewable resources such as biomass or water. Splitting water
via a thermochemical cycle presents a viable option for large-
scale hydrogen production [2]. Among the large number of
thermochemical cycles that can be used to split a molecule of
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approach [3,4]. As indicated in Fig. 1, the IS process primarily
consists of three chemical reactions that involve the decom-
position of sulfuric acid (H,SO,) and hydrogen iodide (HI),
followed by the regeneration of these reagents using the
Bunsen reaction [5]. High temperatures equal to, or greater
than, 1100 K are required to decompose H,SO;. The
exothermic Bunsen reaction is performed at temperatures
ranging from 300 to 400 K. Hydrogen is generated during the HI
decomposition, using a heat source higher than 600 K.
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Fig. 1 — Schematic of the iodine—sulfur thermochemical
water-splitting cycle.

The thermal decomposition of H,SO, is actually divided
into two sub-reactions:

S0;—S0, +1/20, (1073 — 1173 K) 2)

Both of those reactions are highly endothermic and proceed
smoothly without side reactions and with a high equilibrium
conversion ratio at the temperature range indicated. Fig. 2
shows the effect of temperature on computed equilibrium
concentrations of components obtained from the decomposi-
tion of 1 mol of pure H,SO, [6]. The above two processes (1 and
2) were compared for dependence on temperature: the
decomposition of H,SO, to H,O and SO; was predominant
between 400 and 700 K while the reduction of SO3 to SO,
reached high conversions at temperatures higher than 1200 K
[7]. Therefore, one key challenge for the IS process is the
extremely high temperatures that are required for the
decomposition of SO; to SO, and O,, which requires a sub-
stantial expenditure of energy. Recent reports have cited great
potential for nuclear heat to power hydrogen production
plants that wutilize the IS process without producing
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Fig. 2 — Temperature dependence of equilibrium

composition for the decomposition of 1 mol of pure H,SO,
at 1 atm.

greenhouse gas emissions [8]. Under normal operating condi-
tions, the output of a nuclear reactor can achieve temperatures
of more than 1100 K [9]. A laboratory-scale, fixed-bed reactor
with supported Pt/Pd catalysts was constructed and experi-
mentally evaluated for SO; decomposition. At 1103 K, SO,
conversions were equivalent to 0.60, which reached 80% of the
equilibrium value [10]. Moreover, the development of catalysts
with high catalytic activity and stability is also an important
issue for the enhancement of SO; decomposition [11,12]. If SO3
decomposition could attain a higher degree of conversion at
medium temperatures (900—1000 K), which extend the catalyst
lifetime, this coupled system could result in hydrogen pro-
duction that is both highly efficient and economic.

A catalytic membrane reactor (CMR) is a combination of a
permselective membrane and heterogeneous catalysts [13].
CMRs have the inherent capability and advantage of combing
both a reaction and a separation in a single unit. The mem-
brane provides selective removal of products in parallel with a
reversible reaction, which shifts the equilibrium towards the
product side and thus results in a higher reaction conversion
even at lower temperatures [14]. Because equilibrium-limited
reactions usually take place at high temperatures, the mem-
branes used for CMRs are either metal or ceramic: palladium
[15], dense perovskite [16], zeolite [17], silica [18], and alumina
[19]. Considerable research effort has been devoted to the
utilization of CMRs for catalytic reactions such as methane
steam reforming [20] and water gas shift reactions [21]. Tsuru
et al. [22] developed a bimodal catalytic membrane reactor for
H, production via the steam reforming of methane. With H,
extraction through the membrane, methane conversion was
highly enhanced from 0.44 to 0.70 at 500 °C because of the
equilibrium shift effect.

The modeling and simulation of CMRs has attracted
increasing interest [23,24], with objectives that include
modeling the flow as well as mixing and dispersion processes
to develop appropriate guidelines for reactor design [25,26]
and simulating the performance of an experimental reactor
to validate a mathematical model [27,28]. Gallucci et al. [23]
proposed a mathematical model for the simulation of a CMR
in methane steam reforming, and the effect of parameters,
such as reaction pressure, temperature, reactor length, and
membrane thickness on methane conversion were theoreti-
cally investigated. Recently, a one-dimensional, isothermal,
and plug-flow model for catalytic membrane reactors oper-
ated under cocurrent flow conditions [29] was applied to
simulate several catalytic reactions, which included methane
steam reforming [30], NH; decomposition [31], and the dehy-
drogenation of methylcyclohexane [32]. With a given value for
catalyst weight, which was the single fitting parameter, the
simulation results obtained from the CMRs with/without
membrane extraction were in good agreement with the
experimental investigation, which verified that the mathe-
matical model was effective in predicting the performance of
the CMRs. This kind of simple model is beneficial to an un-
derstanding of the mechanism of CMRs and to the develop-
ment of an optimal design, including membrane performance
(e.g., permeance and selectivity) and operation conditions
such as temperature, pressure and feed flow rate.

Previous theoretical studies [33,34] have confirmed that a
dense O, removal membrane could significantly increase the
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