

Variable temperature neutron diffraction studies of single crystals of LiND₂

Shigehito Isobe^{a,*}, Somei Ohnuki^a, William I.F. David^b, Matthias Gutmann^b, Martin O. Jones^c, Peter P. Edwards^c, Takayuki Ichikawa^d, Yoshitsugu Kojima^d

^a Graduate School of Engineering, Hokkaido University, N—13, W—8, Sapporo 0608628, Japan

^b ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK

^c Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK

^d Institute for Advanced Materials Research, Hiroshima University, 1—3—1 Kagamiyama, Higashi Hiroshima 739-8530, Japan

ARTICLE INFO

Article history: Received 3 March 2010 Received in revised form 21 December 2010 Accepted 18 January 2011 Available online 23 March 2011

Keywords: Hydrogen storage Lithium amide Single crystal Neutron diffraction

ABSTRACT

We have synthesized a single crystal of lithium amide (LiNH₂, LiND₂) by melting method, and performed neutron diffraction of the single crystal at variable temperature. LiND₂ is tetragonal structure and I–4 space group. Lattice parameters and unit cell volume of LiND₂ at room temperature, 50 °C, 100 °C, 150 °C and 200 °C were determined. Both of the lattice parameters and the unit cell volume increase with increase of temperature. From these results, we have estimated coefficient of volumetric thermal expansion α_V of LiND₂ to be 222 \times 10⁻⁶/K. With increase of temperature, all thermal ellipsoids gradually expand because of thermal vibration.

Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

1. Introduction

It is necessary to establish high-performance hydrogen storage (H-storage) technologies, for utilizing hydrogen as one of the secondary energies. Three H-storage containers of liquid hydrogen, high-pressure gas hydrogen and absorbed hydrogen in H-storage materials are considered for future practical use as H-storage tanks. Among them, H-storage materials can more densely store hydrogen than high-pressure gas or liquid hydrogen [1,2]. Therefore, the tank system using the H-storage materials has been considered as the most suitable one for H-storage. As one of the most promising H-storage materials, variable amide-imide of light metal such as Li, Na, Mg and Ca has been studied [3-16]. Among them, Li—N—H system was firstly reported by Chen et al. [3]. Lithium nitrides can absorb and desorb a large amount of hydrogen in the two consecutive reactions as follows:

$Li_3N + H_2 \leftrightarrow Li_2NH + Li_2$	I (1)
---	-------

$$Li_2NH + H_2 \leftrightarrow LiNH_2 + LiH$$
 (2)

So far a lot of research on this system has been reported, such reaction mechanism [5-9], catalytic effect of titanium compound on the dehydrogenating property [10,11], and thermodynamic property of Li-N-H [12]. In this work, we have synthesized single crystal of lithium amide, and then we have performed thermal analyses and neutron diffraction of the single crystal at variable temperature.

* Corresponding author.

E-mail address: shigehitoisobe@gmail.com (S. Isobe).

^{0360-3199/\$ –} see front matter Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.ijhydene.2011.01.086

Fig. 1 – Picture and SEM image of single crystal LiNH₂, which was synthesized from LiH and NH₃ by same method as LiND₂.

Fig. 2 – Thermal properties (TG, DTA and TDMS with 2 °C/min heating rate) of single crystal LiNH₂, which was synthesized from LiH and NH₃ by same method as LiND₂.

2. Experimental

Single crystal of $LiND_2$ was prepared by heat-treatment of $LiND_2$ powder. Firstly, we prepared the powder of $LiND_2$ by ball-milling of LiD under 0.5 MPa ND₃ gas in same method

Fig. 3 - Plot of lattice parameters "a, b" and "c" at room temperature, 50 °C, 100 °C, 150 °C and 200 °C.

Fig. 4 – Plot of unit cell volume at room temperature, 50 °C, 100 °C, 150 °C and 200 °C.

Table 1 $-$ Structural parameters of single crystal LiND $_2$ at room temperature, 50 °C, 100 °C, 150 °C and 200 °C.						
Parameter	Room Temp.	50 °C	100 °C	150 °C	200 °C	
Structure Space group	Tetragonal I—4					
a b c Unit cell volume	5.0369(17) 5.0369 10.284(4) 260.91(16)	5.0459(8) 5.0459 10.2818(18) 261.79(7)	5.0533(8) 5.0533 10.2953(18) 262.90(7)	5.0972(10) 5.0972 10.3573(22) 269.10(9)	5.1102(10) 5.1102 10.3510(24) 270.31(10)	

Download English Version:

https://daneshyari.com/en/article/1279328

Download Persian Version:

https://daneshyari.com/article/1279328

Daneshyari.com