

Hydrogen production from solid reactions between MAlH4 and $NH₄Cl$

Huajun Zhang ^a, Yook Si Loo ^a, Hans Geerlings ^{b,c}, Jianyi Lin ^{a,}*, Wee Shong Chin ^{d,}**

^a Institute of Chemical & Engineering Science, A-star, 1 Pesek Road, Jurong Island, Singapore 627833 ^b Shell Global Solutions International BV, P.O. Box 38000, 1030 BN Amsterdam, The Netherlands

^c Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

^d Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

article info

Article history: Received 3 August 2009 Received in revised form 22 October 2009 Accepted 23 October 2009 Available online 13 November 2009

Keywords:

Hydrogen production Hydrogen storage Chemical hydrogen storage Solid state reaction Alkali aluminum hydride

ABSTRACT

Solid reactions between alkali aluminum hydrides (MAlH₄, $M = Li$ or Na) and NH₄Cl (at mole ratio 1:1) at 170 °C were investigated quantitatively using temperature programmed reaction (TPR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and x-ray diffraction (XRD). The release of 3 mol of H_2 from per mole of MAl H_4 was measured, corresponding to 5.6 wt.% H_2 capacity for the NaAlH₄/NH₄Cl system and 6.6 wt.% for LiAlH4/NH4Cl, respectively. By ball milling of the precursor compounds prior to the mixing, the reaction proceeded fast and $NH₃$ production as the by-product could be avoided. The quick solid reactions may be attributed to the low melting temperatures of MAlH $_4$ and the exothermic nature of the reactions. The reaction mechanism was also discussed.

ª 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

1. Introduction

One approach to mitigate green house gas (GHG) emission and global warming is the application of hydrogen and fuel cell technologies to replace fossil fuels as energy source in future. Hydrogen has highest energy density by weight, and can generate power and heat with zero GHG. However for vehicle and portable applications, hydrogen gas is difficult to store and transport. Chemical hydrogen storages generate hydrogen through chemical reactions, and can reach very high wt.% of H_2 , though they are not easily reversible and 'spent fuels' must be regenerated ex-situ.

 $LiAlH₄$ and NaAlH₄ are complex metal hydrides with high hydrogen contents $[1-3]$. For example, LiAl H_4 liberates

0360-3199/\$ - see front matter © 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.ijhydene.2009.10.070

hydrogen in three steps at various temperatures, following the equations shown below [\[4\]:](#page--1-0)

$$
3LiAlH_4 \xrightarrow{150-170^{\circ}C} Li_3AlH_6 + 2Al + 3H_2 \quad (5.3wt. \%H_2)
$$
 (1)

$$
Li_3AlH_6 \xrightarrow{180-220^{\circ}C} 3LiH + Al + \frac{3}{2}H_2 \quad (2.6wt. \%H_2)
$$
 (2)

$$
3LiH + 3Al \xrightarrow{>400^{\circ}C} 3LiAl + \frac{3}{2}H_2 \quad (2.6wt \cdot 8H_2)
$$
 (3)

At temperature 175 °C, \sim 5.3 wt.% H₂ can be produced in the presence of some catalysts or additives [\[5–12\]](#page--1-0). It was recently found in our lab that by solid-state chemical reaction with ammonium halide (e.g. $NH₄Cl$), 1 mol of LiAlH₄ can generate

 $*$ Corresponding author. Tel.: $+65$ 67963807; fax: $+65$ 63166182.

 $*$ Corresponding author. Tel.: $+65$ 65168031; fax: $+65$ 67791691.

E-mail addresses: lin_jianyi@ices.a-star.edu.sg (J. Lin), chmcws@nus.edu.sg (W.S. Chin).

3 mol of H_2 at similar temperature \sim 170 °C with very fast kinetics, corresponding to 8.1 wt.% H_2 with respect to the $LiAlH₄/NH₄F$ system. Similar reaction between $LiAlH₄$ and NH4Br was previously reported, which was however carried out in Et_2O solution at sub-ambient temperatures [\[13\],](#page--1-0) following the equation below.

$$
LiAlH_4 + NH_4X(X = Cl, Br) \xrightarrow{Et_2O, -78^\circ C \text{ and } -23^\circ C} \frac{1}{n}[HAlNH]_n + 3H_2 \uparrow + LiX \tag{4}
$$

There are very few papers, studying the solid-state reactions between alkali aluminum hydrides and ammonium halide [\[14\],](#page--1-0) and the reaction mechanism for the solid reactions is not clear.

In this paper, solid reactions between alkali aluminum hydrides (MAlH₄, $M = Li$ or Na) and NH₄Cl were investigated quantitatively using temperature programmed reaction (TPR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and x-ray diffraction (XRD). The reaction mechanism was discussed.

2. Experimental

LiAlH₄ (Strem Chemicals, 95%), NaAlH₄ (Acros Organics, 93%) and NH4Cl (Kanto Chemical, 99%) were handled solely in an argon glove box. The reaction of $LiAlH₄/NH₄Cl$ (or NaAlH $_{4}$ / NH4Cl) with 1:1 molar ratio was performed in a home-made TPR set-up. Each time, approximately 200 mg of the mixture was heated from room temperature to 50 $^{\circ} \mathrm{C}$ in 30 min, and then to 500 $^{\circ}$ C with a ramp of 5 $^{\circ}$ C/min. Purified argon at 50 ml/ min was used as the carrier gas. The outlet gas was monitored by on-line mass spectroscopy, while the quantities of hydrogen in the outlet gas were determined by water replacement method. Solid products were analyzed by XRD on Bruker AXS D8, using Cu-K α_1 ($\lambda = 1.8406$ Å) radiation. DSC measurement was performed on Netzsch DSC-204, within an argon protected glove box. Purified helium was employed as carrier gas with a flow rate of 50 ml/min, and heating rate of 5 °C/min. Ball milling was carried out on a Retsch PM400/2 planetary ball mill machine, with stainless steel jars and balls. The ball/sample mass ratio was 30 and the jar volume was 250 ml. A tube furnace (Carbolite) was used to heat samples up to 1000 $\mathrm{^{\circ}C}$ from room temperature with a ramp of 5 $\mathrm{^{\circ}C/min},$ argon was used as carrier gas with a flow rate of 30 ml/min.

3. Results and discussion

DSC profiles of the LiAlH4/NH4Cl and NaAlH4/NH4Cl mixtures (molar ratios were 1:1) in Fig. 1 show very sharp exothermic peaks (peaks width \sim 24 s, or 2 °C) at temperature 163 °C (for LiAlH $_4$ /NH $_4$ Cl) and 170 °C (NaAlH $_4$ /NH $_4$ Cl) respectively. There are no distinguished peaks from 200 \degree C to 500 \degree C. For comparison, DSC profiles of as-received pure $LiAlH₄$ and NaAlH4 samples are also included in Fig. 1. The melting point of pure LiAlH₄ is 155 °C, while that of NH₄Cl is 338 °C. The melting of $LiAlH₄$ should be endothermic. But due to the interaction of LiAlH₄ with surface hydroxyl impurities $[15]$, exothermic peak is observed at 155 °C in Fig. 1, in agreement

Fig. 1 – DSC profiles of as-received LiAlH₄ and NaAlH₄; LiAlH₄/NH₄Cl and NaAlH₄/NH₄Cl mixtures (without ball milling).

to some papers in literature [\[16,17\]](#page--1-0). It is widely accepted that the thermal decomposition of LiAlH₄ into Li₃AlH₆, H₂ and Al (which occurs at 150–170 \degree C as illustrated in Eq. [\(1\)\)](#page-0-0) is exothermic, while the decomposition of $Li₃AlH₆$ into LiH, Al and H_2 (Eq. [\(2\)](#page-0-0)) is endothermic [\[18\]](#page--1-0). Therefore the peak at 169 °C in Fig. 1 for the as-received LiAlH₄ is caused by the exothermic decomposition of LiAlH₄ into solid Li₃AlH₆, while the peak between 180 and 240 $^{\circ}$ C in Fig. 1 is the endothermic decomposition of $\textrm{Li}_{3}\textrm{AlH}_{6}$. The peak between 180 and 240 $^{\circ} \textrm{C}$ is not very strong compared to the exothermic peak. However by enlargement the peak position and the endothermic nature become evident. In comparison with pure LiAlH₄, the exothermic peak at 163 °C in the DSC profile of $LiAlH₄/NH₄Cl$ is most probably due to the reaction between LiAlH4 and NH4Cl, since there is no thermal effect at higher temperature region (170–500 $^{\circ}$ C) and the LiAlH $_4$ decomposition can be excluded. Similarly, the melting and decomposition of as-received NaAlH₄ are observed at 182-187, 250-300, and 350–400 $^{\circ}$ C respectively (see the as-received NaAlH $_4$ profile in Fig. 1), and hence the DSC peak at 170 \degree C in the $NaAlH₄/NH₄Cl$ DSC profile must be due to the reaction between $NaAlH_4$ and NH_4Cl . These can be further confirmed by TPR equipped with mass spectroscopic (MS) analysis of the effluent gas.

The TPR-MS results of the mixtures of $LiAlH₄/NH₄Cl$ and NaAlH4/NH4Cl (without ball milling) are shown in [Fig. 2](#page--1-0). There are sharp hydrogen peaks (blue color) at around 160 °C (for $\rm LiAlH_4/NH_4Cl$) and 170 °C (for Na $\rm AlH_4/NH_4Cl$) respectively. The NH3 signal (black color) with low intensity is also observable in both LiAlH₄/NH₄Cl and NaAlH₄/NH₄Cl (without ball milling), starting at slightly lower temperature (than that of H_2), reaching its maximum at the same peak temperatures as H_2 , with the second peak in a wide temperature range between 200 and 300 $^{\circ}$ C. There was no nitrogen found in the effluent gas. The H_2 release temperatures in the TPR-MS profiles coincide well with those in DSC profiles in Fig. 1, confirming that the sharp exothermic DSC peaks of the mixtures in Fig. 1

Download English Version:

<https://daneshyari.com/en/article/1282977>

Download Persian Version:

<https://daneshyari.com/article/1282977>

[Daneshyari.com](https://daneshyari.com)