

Mixed-metal Li_3N -based systems for hydrogen storage: Li_3AlN_2 and Li_3FeN_2

Henrietta W. Langmi*, Scott D. Culligan, G. Sean McGrady**

Department of Chemistry, University of New Brunswick, PO Box 4400, Fredericton, N.B. E3B 5A3, Canada

ARTICLE INFO

Article history: Received 10 March 2009 Received in revised form 23 June 2009 Accepted 24 July 2009 Available online 12 August 2009

Keywords: Hydrogen storage Lithium nitride Aluminum nitride Iron nitride Ternary nitride

ABSTRACT

The hydrogen storage systems Li₃AlN₂ and Li₃FeN₂ were synthesized mechanochemically by two different routes. In each case an intermediate material formed after milling, which transformed into Li_3MN_2 (M = Al or Fe) upon annealing. The synthesis route had a measurable effect on the hydrogen storage properties of the material: Li₃AlN₂ prepared from hydrogenous starting materials (LiNH2 and LiAlH4) performed better than that synthesized from non-hydrogenous materials (Li₃N and AlN). For both Li₃AlN₂ materials, the hydrogen storage capacity and the absorption kinetics improved significantly upon cycling. Ti-doped Li₃AlN₂ synthesized from LiNH₂ and LiAlH₄ showed the best hydrogen storage characteristics of all, with the best kinetics for hydrogen uptake and release, and the highest hydrogen storage capacity of 3.2 wt.%, of which about half was reversible. Meanwhile, Li₃FeN₂ synthesized from Li₃N and Fe displayed similar kinetics to that synthesized from Li₃N and Fe_xN (2 < x < 4), but demonstrated lower gravimetric hydrogen storage capacities. Li₃FeN₂ displayed a hydrogen uptake capacity of 2.7 wt.%, of which about 1.5 wt.% was reversible. For both Li₃AlN₂ and Li₃FeN₂, doping with TiCl₃ resulted in enhancement of hydrogen absorption kinetics. This represents the first study of a ternary lithium-transition metal nitride system for hydrogen storage.

© 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Intensive research efforts worldwide are focused on developing suitable hydrogen storage systems for implementation of a Hydrogen Economy [1,2]. Amongst the most promising candidates for this task are light metal hydrides and their complexes. These possess high volumetric and gravimetric hydrogen densities, but they generally suffer from poor kinetics and are often too stable thermodynamically to release hydrogen at acceptable temperatures [3,4]. Since Chen et al. [5] reported the surprising potential of Li₃N for hydrogen storage in 2002, considerable interest in this and related M–N–H systems has evolved. Most attempts at stoichiometric inclusion of other materials in the Li–N–H system have produced a Li–Mg–N–H phase [6].

There was also much excitement generated by recent reports of the materials Li_2BNH_6 , $Li_3BN_2H_8$, $Li_4BN_3H_{10}$ [7]. The latter compound releases more than 10 wt.% H above 250 °C [8,9], and the second system dehydrogenates to the known Li_3BN_2 [10]. Likewise, $LiAlH_4$ and $LiNH_2$ combine in a 2:1 ratio to give a system with formula $Li_3Al_2NH_{10}$, which releases 6.0 wt.% H at 200 °C [11]. However, all of these systems are irreversible as their exothermic release of H_2 makes them impossible to recharge under practical conditions. Nevertheless, a 2:1 mixture of $LiNH_2$ and $LiAlH_4$ was shown to reversibly release 5.2 wt.% H if heated to 500 °C, decomposing to the known

0360-3199/\$ – see front matter © 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.ijhydene.2009.07.088

^{*} Corresponding author. Fax: +1 506 453 4981.

 $^{^{\}ast\ast}$ Corresponding author. Fax: +1 506 453 4981.

E-mail addresses: hlangmi@unb.ca (H.W. Langmi), smcgrady@unb.ca (G.S. McGrady).

ternary nitride Li₃AlN₂ [12]. An amorphous metastable phase was observed after milling, which was denoted [Li₃AlNH₄], and for which powder XRD and solid-state MAS NMR investigations provided scant clues as to its nature. This latter study by Xiong et al. [12] parallels our own previous independent investigations into the destabilization of Li₃N by Group 13 binary nitrides: we mechanochemically prepared 1:1 mixtures of Li₃N and EN (E = B, Al or Ga) [13]. The Al system showed the most promise, absorbing 3.7 wt.% H without doping at 260 °C and 2.4 wt.% at 195 °C. However, powder XRD analysis of the as-prepared or dehydrogenated material showed this to be not the anticipated Li₃AlN₂, but an as-yet unidentified Li–Al–N intermediate.

The concept of destablization has been employed by several groups working in the area of hydrogen storage by metal hydrides [14–16], to identify and pursue systems with lower H_2 desorption temperatures. The concept is illustrated for Li₃N in Eqs. (1) and (2) by inclusion of a second metal nitride, MN.

 $LiNH_2 + 2LiH \rightarrow Li_3N + 2H_2 \tag{1}$

 $LiNH_2 + 2LiH + MN \rightarrow Li_3MN_2 + 2H_2$ ⁽²⁾

Thus, if the dehydrogenation product in Eq. (2) (Li₃MN₂) is more thermodynamically stable than that in Eq. (1) (Li_3N), then the left hand side of Eq. (2) is destabilized, and LiNH₂/LiH should desorb H_2 at lower temperatures than is the case for Eq. (1), although the inclusion of MN results in a lower overall wt.% hydrogen capacity for the system. Solid-state DFT calculations using the WIEN2k software package indicate that inclusion of AlN and FeN as described in Eq. (2) stabilizes the right hand side of Eq. (2) by 39 and 29 kJ mol⁻¹; respectively [17]. These numbers can be compared with the value of 30.4 kJ mol⁻¹ reported in the literature for the stabilization of $\mathrm{Li}_3\mathrm{AlN}_2$ with respect to $\mathrm{Li}_3\mathrm{N}$ [12]. Hence, inclusion of the foreign nitride should destabilize the hydrogenated LiNH₂/LiH state by offering a thermodynamically preferable alternative to Li₃N; viz. Li₃MN₂, as exemplified by Eq. (2). Among the transition metal nitrides obvious candidates for incorporation with Li₃N are the light metal nitrides TiN, VN and FeN, which form the stable ternary systems Li₅TiN₃ [18], Li₇VN₄ [19] and Li₃FeN₂ [20] respectively. In order for the destabilization strategy to work as exemplified in Eq. (2), a stable nitride containing the metal in its (III) oxidation state is needed. The most amenable of these systems is Li₃FeN₂, which has been known for a long time [20]; rather surprisingly it does not appear to have been investigated as a hydrogen storage material. The electrochemical [21] and deintercalation [22] properties of Li₃FeN₂ have been studied; however the focus of such studies has typically been on lithium ion battery applications <a>[23]. In this work we report: (i) further exploration of the Li-Al-N system; and (ii) the first investigation, to our knowledge, of Li₃FeN₂ for hydrogen storage.

2. Experimental

2.1. Synthesis of Li₃AlN₂

All storage and manipulation of materials was carried out in a nitrogen-filled glovebox to minimize the possibility of sample contamination from atmospheric oxygen and moisture. A 1:1 molar ratio of Li₃N (STREM, 99.5%) and AlN (Aldrich, 98+%) was loaded into a 250 mL stainless steel vessel containing five stainless steel balls of diameter 20 mm. The ball-to-powder mass ratio was 54:1. The materials were milled for 48 h at a rotational speed of 200 rpm using a Retsch PM100 ball mill. The parameters of the mill were set such that after every 5 min of milling the mill paused for 10 s and the direction of rotation was automatically reversed. A fresh Li₃N/AlN sample was doped with 2 mol% TiCl₃ and milled in a similar manner. The milled materials were loaded into a monel crucible, which was placed inside a custom-made quartz tube; this was subsequently placed inside a tube furnace and annealed at 620 °;C for 16 h under a flowing stream of N₂ gas. Annealing caused the sample to sinter, and it required grinding with a pestle and mortar before subsequent analysis.

In the second synthesis route the starting materials were $LiNH_2$ (Aldrich, 95%) and $LiAlH_4$ (Aldrich, 95%). Milling parameters were similar to those reported in a previous study by Xiong et al. [12]. A 2:1 molar mixture of $LiNH_2$ and $LiAlH_4$ was milled for 12 h at a rotational speed of 200 rpm. The ball-to-powder mass ratio was 30:1. The parameters of the mill were set such that after every 60 s of milling the mill paused for 30 s and the direction of rotation was reversed. Another $LiNH_2/LiAlH_4$ mixture was doped with 2 mol% TiCl₃ and also milled. The undoped and doped mixtures were annealed at 500 °C for 16 h in a flowing stream of N₂.

2.2. Synthesis of Li₃FeN₂

The starting materials Li₃N (STREM, 99.5%), Fe (Fisher, 99%) and Fe_xN ($2 \le x \le 4$) (All-Chemie, 99.9%) were used as received, without further purification. Li₃N was combined with Fe and Fe_xN, both with and without an additional 2 mol% TiCl₃ catalyst, such that the total mass of the mixture was approximately 5 g and the molar ratio Li:Fe was 3.5:1. The samples prepared from Fe were placed in a 250 mL stainless steel milling vessel containing five stainless steel balls of diameter 20 mm. The ball-to-powder mass ratio was 32:1. The samples prepared from Fe_xN were placed into a 50 mL tungsten carbide milling vessel containing 10 tungsten carbide balls of diameter 10 mm. The ball-to-powder mass ratio was 16:1. Milling was carried out under a nitrogen atmosphere using a Retsch PM100 planetary mill at 200 rpm for 10 h at a time. Milling was performed in 5 min intervals, followed by a 10 s pause and the direction of rotation was alternated for each consecutive segment. The milled samples were annealed for 17 h at 720 °C. Similarly to Li₃AlN₂, annealing produced a mass of sintered powder. Nishijima et al. [22] reported a similar method for making Li₃FeN₂ using Li₃N and Fe₄N as starting materials; however, they were unsuccessful in isolating a single phase using Li₃N and Fe as starting materials.

2.3. Sample characterization

Powder XRD patterns were measured using a Bruker D8 Advance diffractometer (CuK α radiation). The samples were mounted in a PVC holder and covered with parafilm to protect them from contact with air during the measurements. The parafilm resulted in additional diffraction peaks at *ca*. 21.6 and

Download English Version:

https://daneshyari.com/en/article/1283070

Download Persian Version:

https://daneshyari.com/article/1283070

Daneshyari.com