Journal of Power Sources 329 (2016) 290-296

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Core-shell hexacyanoferrate for superior Na-ion batteries

Min Wan, Yang Tang, Lili Wang, Xinghua Xiang, Xiaocheng Li, Kongyao Chen, Lihong Xue, Wuxing Zhang^{*}, Yunhui Huang^{*}

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

HIGHLIGHTS

GRAPHICAL ABSTRACT

- Core-shell structured Fe-HCF@Ni-HCF was synthesized via a facile solution method.
- The Fe-HCF@Ni-HCF composite integrates the advantages of both Fe-HCF and Ni-HCF.
- Ni-HCF coating improves the electron conductivity and suppresses the side reactions.

ARTICLE INFO

Article history: Received 14 June 2016 Received in revised form 8 August 2016 Accepted 11 August 2016

Keywords: Core-shell Potassium nickel hexacyanoferrate Sodium iron hexacyanoferrate Cathode Sodium ion batteries

ABSTRACT

100 200

20

°ò

Sodium iron hexacyanoferrate (Fe-HCF) is regarded as a potential cathode material for sodium-ion batteries (SIBs) due to its high specific capacity, low cost, facile synthesis and environmentally friendly. However, Fe-HCF always suffers from poor electronic conductivity, low crystallinity and side reactions with electrolyte, leading to poor rate performance, low coulombic efficiency and deterioration of cycling stability. Herein, we report a green and facile synthesis to encapsulate Fe-HCF microcubes with potassium nickel hexacyanoferrate (Ni-HCF). The core-shell Fe-HCF@Ni-HCF composite delivers a reversible capacity of 79.7 mAh g^{-1} at 200 mA g^{-1} after 800 cycles and a high coulombic efficiency of 99.3%. In addition, Fe-HCF@Ni-HCF exhibits excellent rate performance, retaining 60 mAh g^{-1} at 2000 mA g⁻¹. The results show that Fe-HCF@Ni-HCF integrates the advantages of both Fe-HCF and Ni-HCF, making it electrochemically stable as cathode material for SIBs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, sodium ion batteries (SIBs) have received increasing research attentions as alternative for lithium ion batteries in the application of large-scale electric energy storage (EES) [1–4]. SIBs have the advantages of high sodium abundance and low

cost, and plenty of materials are investigated for sodium ion storage, such as layered oxides and tunneled oxides [5–10]. Except these, Prussian blue and its derivatives (PBAs) with the merits of high specific capacity, facile synthesis and low cost, are also identified as promising electrode materials for SIBs [11–17].

PBAs usually have a face-centered cubic structure: $A_x M_1 [M_2(CN)_6]_y \square_{1-y} \bullet n H_2 O$ (0 < x < 2, 0 < y < 1), in which A represents alkali cations, M transition metal ions, and

the vacancies of [M₂(CN)₆] occupied by coordinated H₂O [18]. The 3D open framework of PBAs can provide large interstitial sites for fast Na⁺ insertion/extraction. Among these PBAs, sodium iron

300 400 500

Cycle number

600 700

800

^{*} Corresponding author.

Corresponding author.

E-mail address: zhangwx@hust.edu.cn (W. Zhang).

Fig. 1. Schematic representation of synthesis procedure of Fe-HCF@Ni-HCF composite.

hexacyanoferrate (A = Na, $M_1 = M_2 =$ Fe, Fe-HCF) has two electrochemically active sites, which leads to a high theoretical specific capacity of 170 mAh g⁻¹ [19]. However, Fe-HCF always suffers from low coulombic efficiency and poor cycling stability due to the lattice vacancies in the crystal structure and the side reactions between Fe-HCF and electrolyte [20–22].

In order to solve these drawbacks of Fe-HCF, it is desirable to synthesize high-quality Fe-HCF with few lattice vacancies via a single iron source method [23–25]. You et al. used this method to synthesize the highly crystalline Na_{0.61}Fe[Fe(CN)₆]_{0.94}. The reversible specific capacity is about 170 mAh g⁻¹ under 25 mA g⁻¹, and coulombic efficiency is nearly 100% [23]. Wang et al. also synthesized the sodium-rich and stable Na_{1.92}Fe[Fe(CN)₆] with high capacity (157 mAh g⁻¹ at 15 mA g⁻¹), long cycle life (80% after 750

Fig. 2. XRD patterns (a) and Raman spectra (b) of Ni-HCF, Fe-HCF and Fe-HCF@Ni-HCF.

cycles) and excellent rate capability (145 mAh g⁻¹at 1500 mA g⁻¹) [24]. Jiang et al. synthesize PB@C composite which shows superior rate performance and remarkable cycling stability [25]. However, the single iron source method may release highly toxic [CN] ⁻ anions and the yield is quite low, which is not suitable for the mass production. Recently, our group used the double iron sources to synthesize high-quality Fe-HCF nanocubes with high yield [26]. We also modified the surface of Fe-HCF microcubes by PPy coating, and the obtained Fe-HCF@PPy exhibits excellent rate capability and improved cycling stability [22]. However, the coulombic efficiency of Fe-HCF@PPy is 97%, which is still not satisfied for the practical applications. Therefore, it is still a challenge to develop a non-toxic and high-yield method to prepare Fe-HCF with high coulombic efficiency and excellent cyclability.

On the other side, potassium nickel hexacyanoferrate (Ni-HCF) and sodium nickel hexacyanoferrate with low capacity of 60 mAh g⁻¹ and 70 mAh g⁻¹ are highly stable during redox cycling because the inactive Ni²⁺ can stabilize the crystal lattice [27,28]. Daisuke Asakura et al. designed a core-shell structure by coating $K_{0.1}Cu[Fe(CN)_{6}]_{0.7}3.5H_2O$ (Cu-HCF) core with Ni-HCF shell [20], and such heterostructure delivered enhanced lithium storage performance over the sum of the individual components. Masashi Okubo et al. investigated Cu-HCF@Ni-HCF as cathode material for SIBs [29]. It was found that Ni-HCF could effectively inhibit the formation of over-sodiated insulating surface, and hence obviously improve the rate performance of Cu-HCF. Inspired by the above strategies, it is supposed that the cycling stability and coulombic efficiency of Fe-HCF can also be improved via a coating of Ni-HCF.

Herein, we propose a facile co-precipitation method to synthesize core-shell structured Fe-HCF@Ni-HCF with outstanding electrochemical performance as cathode material for SIBs. Compared with our previous work [22], the high-quality Fe-HCF@Ni-HCF integrates the advantages of both Fe-HCF and Ni-HCF, which exhibits high specific capacity, excellent cycling stability and promoted rate performance. It retains 78% capacity at 200 mA g⁻¹ after 800 cycles and delivers an average coulombic efficiency of approximately 100% during cycling. The result further proves that Fe-HCF is a promising cathode material in the practical application of SIBs.

2. Experimental

Fe-HCF microcubes were prepared by a co-precipitation method as reported in our previous work [22]. Typically, 1.67 g FeSO₄·7H₂O and 15 g sodium citrate were dissolved in 200 mL deionized (DI) water, while 1.94 g Na₄Fe(CN)₆·10H₂O was dissolved into 200 mL DI water. The above two precursor solutions were then mixed at 25 °C for 6 h. The precipitates were collected by centrifugation, washed thoroughly with DI water and alcohol, and finally dried in a vacuum oven at 70 °C for 12 h. Ni-HCF nanocubes were synthesized by following process. Briefly, 4.29 g NiCl₂·6H₂O and 9.9 g sodium citrate were dissolved in 600 mL DI water. 3.96 g K₃Fe(CN)₆ was dissolved into 600 mL DI water. The above two precursor solutions were then mixed at 25 °C under continuous stirring for 24 h. The precipitates were collected by centrifugation, washed thoroughly with DI water and alcohol, and finally dried in a vacuum oven at 70 °C for 12 h.

The synthetic procedure for core-shell structured Fe-HCF@Ni-HCF composites is illustrated in Fig. 1. Firstly, 0.5 g Fe-HCF was dissolved into 60 mL DI water and ultrasonically stirred for 20 min, and then 0.396 g K_3 Fe(CN)₆ was added under continuous stirring for 30 min, marked as solution A. 0.429 g NiCl₂·6H₂O and 0.99 g sodium citrate were dissolved in 60 mL DI water to form solution B. Subsequently, solution B was added into solution A, and the mixed solution was stirred at room temperature for 24 h. The precipitates

Download English Version:

https://daneshyari.com/en/article/1283403

Download Persian Version:

https://daneshyari.com/article/1283403

Daneshyari.com