Journal of Power Sources 265 (2014) 91-96

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Electrocatalytic performances of $LaNi_{1-x}Mg_xO_3$ perovskite oxides as bi-functional catalysts for lithium air batteries

Zhenzhen Du^a, Peng Yang^a, Long Wang^b, Yuhao Lu^b, J.B. Goodenough^b, Jian Zhang^a, Dawei Zhang^{a,b,c,*}

^a School of Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China ^b Texas Materials Institute, The University of Texas at Austin, 1 University Station, C2201, Austin, TX 78712, USA ^c CAS Key Laboratory of Materials for Energy Conversion, Hefei 230026, PR China

HIGHLIGHTS

• LaNi_{1-x}Mg_xO₃ is used for bi-functional air electrode in Li–air batteries.

• LaNi_{1-x}Mg_xO₃ has higher Ni³⁺/Ni²⁺ ratio and will absorb hydroxyl on the surface.

• Higher initial capacities of LaNi_{1-x}Mg_xO₃ in Li–air batteries are reported.

ARTICLE INFO

Article history: Received 1 March 2014 Received in revised form 17 April 2014 Accepted 18 April 2014 Available online 2 May 2014

Keywords: Li–air battery Perovskite oxide Bi-functional catalyst Oxygen reduction reaction Oxygen evolution reaction

ABSTRACT

Mg-doped perovskite oxides $LaNi_{1-x}Mg_xO_3$ (x = 0, 0.08, 0.15) electrocatalysts are synthesized by a sol –gel method using citric acid as complex agent and ethylene glycol as thickening agent. The intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity of as-prepared perovskite oxides in aqueous electrolyte are examined on a rotating disk electrode (RDE) set up. Li–air primary batteries on the basis of Mg-doped perovskite oxides $LaNi_{1-x}Mg_xO_3$ (x = 0, 0.08, 0.15) and nonaqueous electrolyte are also fabricated and tested. In terms of the ORR current densities and OER current densities, the performance is enhanced in the order of $LaNiO_3$, $LaNi_{0.92}Mg_{0.08}O_3$ and $LaNi_{0.85}Mg_{0.15}O_3$. Most notably, partially substituting nickel with magnesium suppresses formation of Ni²⁺ and ensures high concentration of both OER and ORR reaction energy favorable Ni³⁺ ($e_g = 1$) on the surface of perovskite catalysts. Nonaqueous Li–air primary battery using $LaNi_{0.92}Mg_{0.08}O_3$ and $LaNi_{0.85}Mg_{0.15}O_3$ as the cathode catalysts exhibit improved performances compared with $LaNiO_3$ catalyst, which are consistent with the ORR current densities.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Li–air batteries have recently raised widespread concerns because of their significantly higher theoretical specific energy density (5200 Wh kg⁻¹ based on full utilization of a lithium anode including the mass of oxygen) than Li ion batteries, low cost, and environ-mentally friendly operation [1,2]. Nonetheless, these batteries with non-aqueous electrolyte have considerable challenges. According to some researchers [3–5], in non-aqueous rechargeable Li–air batteries, the principal electrode reactions are thought to be:

E-mail address: zhangdw@ustc.edu.cn (D. Zhang).

$$2Li + 0.5O_2 \leftrightarrow Li_2O \tag{1}$$

$$2Li + O_2 \leftrightarrow Li_2O_2 \tag{2}$$

Charge and discharge reactions need to be catalyzed to reduce kinetic losses because of breaking and forming of the O–O bond on discharge and charge, respectively [6–8]. The group of Yang Shao-horn has developed platinum–gold nanoparticles exhibiting bi-functional catalytic activity for rechargeable Li–air battery [9]. Thapa et al. [10,11] have reported mesoporous Pd/MnO₂ with a charging potential of 3.6 V and a reversible capacity of ca. 545 mAh $g_{-tatalyst}^{-1}$ observed at 0.025 mA cm⁻². Platinum nanoparticle–graphene hybrids have also been successfully synthesized severed as cathode catalysts for Li–air battery [12]. However, the limited availability and high cost of the noble

^{*} Corresponding author. School of Chemical Engineering, Hefei University of Technology, Hefei 230009, PR China. Tel.: +86 551 62901454; fax: +86 551 62901450.

Fig. 1. (a) XRD patterns of LaNi_{1-x}Mg_xO₃ (x = 0, 0.08, 0.15) perovskite oxides. SEM images of (b) LaNiO₃, (c) LaNi_{0.92}Mg_{0.08}O₃, (d) LaNi_{0.85}Mg_{0.15}O₃.

metal-based bi-functional catalysts prevent their large-scale applications in the Li–air batteries. Therefore it is extremely significant to develop cost-effective, corrosion-resistant, and highly active bi-functional catalysts for both ORR and OER kinetics in Li–air batteries.

Perovskite materials have been widely used as catalysts for fuel cells and metal-air batteries owing to their defective structures, excellent oxygen mobility and low cost. LaNiO₃ is considered to have excellent both ORR and OER catalytic performance because that Ni³⁺ at B site in the perovskite structure has single electronfilled e_{g} orbit, and therefore, provides the favorable bond energy of M(B site)–O bond for ORR and OER. However, presence of Ni^{2+} in LaNiO₃ results in $e_g > 1$, decreases its ORR catalytic activity. In the light of tuning the strength of Ni-O bond covalency to sustain good catalytic performance, both B-site and/or A-site doping on LaNiO₃ has been demonstrated to be beneficial. The improved OER activities of perovskites are related to the high covalency of transition metal-oxygen bonds [13]. Suntivich and co-workers have recently reported that LaNiO₃ catalysts show comparable performances to platinum nanoparticles in actual fuel cell cathodes [14], which arises our interest in studying the catalytic property of partially substituting Ni with other cations.

Herein, we demonstrated the feasibility of improved electrocatalytic activities of $LaNi_{1-x}Mg_xO_3$ catalysts using the thin-film RDE technique [14,15], and Li–air batteries with such perovskites as cathode catalysts of non-aqueous electrolyte were also investigated.

2. Experimental section

2.1. Synthesis of materials

Perovskite oxide nanoparticles were synthesized by the sol-gel method. Briefly, desired amounts of La(NO₃)₃·*x*H₂O, Mg(NO₃)₂·4H₂O and Ni(NO₃)₂·6H₂O (Sinopharm, reagent grade) were dissolved in deionized water, respectively. Subsequently, these metal nitrates were gradually added to a mixture of citric acid (HOC(COOH)(CH₂COOH)₂, \geq 99.5%) and ethylene glycol (HOCH₂-CH₂OH, 99.8%) under stirring conditions at 60 °C. The molar ratios

Table 1	
Binding energies obtained by XPS.	

Catalyst	La 3d _{5/2}	Ni 2p _{3/2}	Mg 1s	O 1s
LaNiO3	834.7	854.5 856.0	-	528.16 529.29 531.0 532.02
LaNi _{0.92} Mg _{0.08} O ₃	834.7	854.7 856.0	1302.7 1304.3	528.4 529.3 531.02 532.02
LaNi _{0.85} Mg _{0.15} O ₃	834.6	854.6 855.9	1302.3 1304.3	528.1 529.3 531.0 532.01

Download English Version:

https://daneshyari.com/en/article/1284052

Download Persian Version:

https://daneshyari.com/article/1284052

Daneshyari.com