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h i g h l i g h t s

� Battery-management systems require accurate cell models over a wide operating range.
� A previously reported physics-based model is accurate over only a narrow range.
� We use model blending to extend the operating window of the physics-based model.
� We show that the blended model is stable and accurate over a broad operating range.
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a b s t r a c t

In a previous paper, we developed a method to produce a physics-based one-dimensional discrete-time
state-space reduced-order model (ROM) of a lithium-ion cell. The method relies on linearizing the
standard porous-electrode equations around a fixed state-of-charge (SOC) and operating temperature
setpoint. The ROM is able to track a highly dynamic input accurately near the linearization setpoint, but
its performance degrades as either the cell’s SOC or temperature move away from this linearization point.

This paper describes a way to extend the accuracy of the ROM over a wide range of SOCs and tem-
peratures using a model-blending approach. Our results demonstrate that the approach accurately
models the cell’s voltage and internal electrochemical variables over a wide range of temperature and
SOC, with little added computational complexity.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Battery chargers and battery-management systems rely on
mathematical models of their battery cells to be able to determine
dynamic operational limits within which the battery pack may be
safely operated. Current battery-management systems use equiv-
alent circuit models [1]. The advantage of these models is that they
are simple enough computationally to be incorporated into real-
time control systems, and thus can be used in methods to esti-
mate many cell properties such as state-of-charge (SOC) and state-
of-health, as well as voltage-based power limits (see, for example,
[2e4]).

Equivalent-circuit models can produce accurate predictions of
cell voltage; however, they do not provide insight into the internal

electrochemical variables of the cell. On the other hand, porous-
electrode models do have this ability. Doyle, Fuller, and Newman
[5,6] have developed such a physics-based porous-electrode
model, which comprises coupled nonlinear partial-differential
equations (PDEs). This model describes the electrochemical in-
ternal dynamics of the cell in addition to being able to predict cell
voltage.

Control algorithms based on knowledge of the internal elec-
trochemical state have the potential to expand the performance
and extend the life of cells. They can predict power limits with
respect to electrode surface depletion/saturation conditions and
with respect to side reactions responsible for damage and sudden
loss of power [7,8]. For example, it is shown in Ref. [9] that elec-
trochemically limited pulse charging a 6 Ah cell to the same
negative-electrode phase-potential fs � fe at the negative-
electrode/separator boundary as encountered at equilibrium at
100% SOC increases usable charge power by 22% and usable energy
by 212% versus voltage-limited charging.
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However, the computational complexity of the porous-electrode
PDE models precludes their use by real-time control systems.
Instead, accurate reduced-order approximate models, which can
predict both the cell voltage and internal electrochemical variables,
are needed. Over a series of papers, we are presenting a method-
ology to develop such models.

The first paper in the series introduced the “discrete-time
realization algorithm” (DRA) as a method for converting a tran-
scendental transfer function into a discrete-time state-space
reduced-order model [10]. It is further shown in Ref. [10] that the
resulting model is a globally optimum p-rank approximation to the
transfer function it approximates, by the SchmidteMirsky theorem
[11]. The second paper showed how to find transcendental transfer
functions corresponding to lithium-ion internal cell dynamics [12].
The scope of the work in the second paper was limited to showing
how to create an ROM that is linearized to give accurate predictions
around a single SOC and temperature set-point only. This ROMwas
able to predict cell voltage as well as cell potentials fs(x,t) and
fe(x,t), lithium concentrations cs,e(x,t) and ce(x,t), and intercalation
flux j(x,t) for any desired combination of one-dimensional internal
cell locations x. This was accomplished using a fifth-order linear
discrete-time state-space model, plus some nonlinear algebraic
corrections. The resulting reduced-order model (ROM) is simple
enough computationally for use in real-time estimation of the
electrochemical variables. Our results demonstrated that the ROM
performs well if the temperature remains constant and the SOC
does not vary significantly from the linearization point.

This paper is the third in the series of planned works. Here, we
present a method to extend the accuracy of the model over a wide
range of both SOC and operating temperatures. We accomplish this
by generating individual models at specific states-of-charge and
temperatures and then blend the models using the real-time esti-
mates of the SOC and temperature. A planned fourth paper will
show how to incorporate heat generation and heat flow into the
model.

The paper is organized as follows. In Section 2, we review the
approach used to produce the discrete-time reduced-order model
at a particular operational setpoint, and how to apply this model to
an arbitrary current input. In Section 3, we discuss the impact of
changing temperature and SOC on each ROM. In Section 4, we
describe the specific implementation of the proposed model-
blending approach, and demonstrate that this approach produces
a stable system. Results using three different current and temper-
ature scenarios are presented in Section 5.

2. Background: the single setpoint ROM

An overview of the steps required to generate a physics-based
reduced-order linear state-space model at a specific operating

setpoint is illustrated in Fig. 1. The first step is to determine the
physics parameters of the cell, which include factors such as elec-
trode and particle dimensions, conductivities, diffusivities, poros-
ities, open-circuit-potential relationships, and so forth. These
parameters are found either by direct measurements and electro-
chemical experiments or, in the cases where that is not feasible, by
running tests on the cell and using system identification techniques
to estimate the parameter values. The values of these physical pa-
rameters are input to the PDE porous-electrode model equations,
which are represented as “PDEModel” in thefigure. These equations
describe the electrochemical dynamics of the cell and allow us to
solve for five electrochemical variables within the cell: the reaction
flux j(x,t), solid and electrolyte lithium concentration cs,e(x,t) and
ce(x,t), and solid and electrolyte potentials fs(x,t) and fe(x,t). These
nonlinear coupled PDEs can be solved using finite-element soft-
ware, for example, but this is computationally too complex for use in
a real-time controller. Instead, wemust find a reduced-ordermodel.

In the next step, we follow the approach introduced in
Refs. [7,13] and convert the PDE model into transcendental transfer
functions after making two simplifying assumptions: 1) that the
potential in the electrolyte is not dependent on the concentration of
lithium in the electrolyte, and 2) that the nonlinear equations can
be linearized. We then derive closed-form Laplace-domain tran-
scendental transfer functions from these linearized equations. The
discrete-time realization algorithm (DRA), based on the HoeKal-
man algorithm [14], is used to convert these transcendental
transfer functions into an optimal discrete-time state-space reali-
zation. A detailed description of the DRA is given in Ref. [10]. A brief
summary of the steps is as follows:

1. Sample the continuous-time transfer function in the frequency
domain at a high rate, and take the inverse discrete Fourier
transform (IDFT) to get an approximation to the continuous-
time impulse response. Then, form the continuous-time step
response from the continuous-time impulse response.

2. Compute the discrete-time pulse response values from the
continuous-time step response, assuming a sample and hold
circuit connected to the system input.

3. Generate a discrete-time state-space realization using the
deterministic HoeKalman algorithm. This algorithm returns the
reduced-order A, B, and C matrices from the discrete-time
pulse-response sequence in Step 2. The order of the system is
determined from the sorted singular values of the Hankelmatrix
that is computed as part of the algorithm. The Dmatrix is found
by the initial value theorem.

The resulting ROM comprises a linear dynamic part and some
algebraic nonlinear corrections. The optimal reduced-order
discrete-time linear state-space model has the form
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Fig. 1. Approach to generating the linear state-space model.
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