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h i g h l i g h t s

� State equations are derived from the battery equivalent circuit model.
� An adaptive switching gain sliding mode observer for state of charge estimation is purposed.
� The new observer minimises the chattering and improves the estimation accuracy.
� The experimental results of a lithium-polymer battery verify the effectiveness of the purposed observer.
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a b s t r a c t

In this paper, a novel approach for battery state of charge (SOC) estimation in electric vehicles (EVs) based
on an adaptive switching gain sliding mode observer (ASGSMO) has been presented. To design the
ASGSMO for the SOC estimation, the state equations based on a battery equivalent circuit model (BECM)
are derived to represent dynamic behaviours of a battery. Comparing with a conventional sliding mode
observer, the ASGSMO has a capability of minimising chattering levels in the SOC estimation by using the
self-adjusted switching gain while maintaining the characteristics of being able to compensate modelling
errors caused by the parameter variations of the BECM. Lyapunov stability theory is adopted to prove the
error convergence of the ASGSMO for the SOC estimation. The lithium-polymer battery (LiPB) is utilised
to conduct experiments for determining the parameters of the BECM and verifying the effectiveness of
the proposed ASGSMO in various discharge current profiles including EV driving conditions in both city
and suburban.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the progressive rise of petrol costs and environmental
concerns on exhaust emission from petrol-driven vehicles, the eco-
friendly electric vehicles (EVs) have greatly exhibited promising
potential to revive as the leading means of transportation in up-
coming decades. The EV performance is highly dependent on bat-
tery characteristics such as operation voltage, temperature, charge
or discharge rate and aging. Among existing battery types appli-
cable to EVs, lithium-polymer battery (LiPB) is widely recognised as
the most capable candidate for the development and innovation of
the new generation EVs. Compared with other types of EV batteries
such as lead-acid batteries, nickelecadmium batteries and nickele

metal hydride batteries, LiPBs are superior in terms of high energy
and power density, broad operating temperature range, rapid
charge capability, no memory effects, long cycle life and extremely
low self-discharge rate [1,2].

The amount of battery available capacity is closely related to the
state of charge (SOC), which is considered as one of the key factors
in battery management system (BMS) for supporting optimal bat-
tery performance and safety in EVs. The accurate battery SOC
indication is essential for predicting a reliable travelling range,
maximising the efficiency of battery energy utilisation and pre-
venting the batteries in EVs from over-charging or over-
discharging. Unfortunately, the SOC involves in intrinsic electro-
chemical processes of a battery, and it cannot be directly measured
by a sensor. It should be estimated by an advanced mathematical
algorithm with the aids of measurable signals such as terminal
voltage and current from the battery.
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A number of techniques have been proposed to estimate the SOC
of a battery and each one has its own advantages in certain aspects
[3e5]. The most straightforward approach is the ampere-hour (Ah)
counting, which simply integrates the battery charge and discharge
currents over time. The SOC can be calculated by referring to the
calibration point at the fully charged battery. This method is inex-
pensive to be implemented in hardware, but the estimation accu-
racy is strongly dependent on the sampling frequency and the
precision of the current sensor. Moreover, this non-model and
open-loop-based estimator can easily accumulate errors caused by
embedded noises and current measurement drift and it is also
incapable of determining the initial SOC. An enhanced version of Ah
counting has shown improved SOC estimation results by online
evaluating Coulombic efficiency with recalibration of the battery
capacity [6].

The impedance measurement has been declared as an effective
technique for the SOC estimation [7e9]. It loads a series of small
amplitude a.c. signals into a battery to detect the responses of the
battery in the wide range of frequencies. The SOC can be obtained
by analysing the battery impedance, but the measured impedances
cannot completely represent the dynamics of batteries in the case
of large discharge current in EVs. Another drawback of this
approach is that a set of the bulky and costly auxiliary equipment
such as the signal generator and the impedance spectroscope is
required to carry out impedance measurement.

Another category of the SOC estimation methods is relied on
computational and intelligence-based strategies, which encompass
artificial neural networks (NNs), fuzzy neural networks, adaptive
fuzzy neural networks and support vector machine [10e13]. These
data-oriented approaches can accurately estimate the SOC for all
kinds of batteries in the absence of the details of batteries, but they
require a large number of training sample data to train the NNs.
Therefore, they demand more powerful and costly data processing
chips to handle the massive computation loads in the BMSs.
Furthermore, the SOC would be unpredictable in case of discharge
current profiles loaded in EV batteries deviated from those repre-
sented by the training data.

The Kalman filter (KF), as a classical state estimation method for
dynamic systems, was also developed to estimate the SOC based on
a linear model [14,15]. For the battery represented by a nonlinear
model, some advanced KF techniques such as extended KF (EKF)
[16,17], sigma-point KF (SPKF) [18,19] and unscented KF (UKF)
[20,21] were proposed to achieve online SOC estimation. The
essential idea of the EKF approach is to transform a nonlinear
system into a linear system by linearising the nonlinear function
based on the first order Taylor series expansion, such a process
gives rise to large linearisation errors and complicated computation
of the Jacobian matrix which may lead to the instability of the filter
and inaccurate estimation for highly nonlinear battery systems in
EVs. Instead of the local linearisation in the EKF, the SPKF and UKF
approaches use an unscented transformation to approximate a
Gaussian distribution of the state random variable with a set of
sample points or sigma points and offer better SOC estimation re-
sults in terms of accuracy and robustness [18e21].

All these KF-based SOC estimation algorithms, however, require
accurate battery model parameters with the assumption that
constant values of the process and measurement noise covariance
are priori known, which are hardly practical and error-prone due to
the complex electrochemical reactions inside batteries for EV
driving conditions. Furthermore, the constant values of noise
covariance can result in remarkable errors and divergence in the
battery SOC estimation. Later, both an adaptive EKF (AEKF) and an
adaptive UKF (AUKF) have been developed to estimate the values of
the process and measurement noise covariance during the online
process [22,23]. They have demonstrated better precision in the

SOC estimation and filter divergence restraint at the expense of
higher complexity and computational cost.

More recently, the HN observer-based method has been pro-
posed to estimate the SOC without the requirement of the exact
statistical properties of the battery. This method minimises the
errors of system andmeasurement so that the SOC estimation error
is less than a given attenuation level [24,25], where an alternative
feedback gain is employed to tackle modelling errors and distur-
bances. Similarly, the sliding mode observer (SMO) based SOC
estimation method has been adopted to overcome the un-
certainties of battery model, external disturbances and measure-
ment noises [26,27]. Nevertheless, this method relies on the
exhaustive understanding of battery dynamics for the appropriate
selection of the SMO parameters such as uncertainty boundaries
and switching gains, leading to the trade-off between the chatter-
ing magnitude and the convergence speed in the SOC estimation.

In this paper, a novel approach for the SOC estimation based on
an adaptive switching gain sliding mode observer (ASGSMO) has
been proposed. Comparing with constant switching gains SMO, the
ASGSMO is able to dynamically adjust the switching gains in
response to the tracking errors, and guarantee the reachability of
sliding mode surface and trigger the sliding mode. Once the sliding
mode is activated, the switching gains are self-tuned to “adequate”
levels to counteract the modelling errors and reduce the chattering
magnitudes, thereby improving the SOC estimation accuracy.

The remaining part of this paper is organised as follows. In
Section 2, a battery equivalent circuit model (BECM) is presented to
characterise the discharge behaviours of the LiPB in the presence of
parameter uncertainties. The detailed procedures to identify the
BECM parameters are also explained in this section. In Section 3,
the ASGSMO design methodology is elaborated for the SOC esti-
mation. The proposed ASGSMO is validated for SOC estimation by
experimental results in Section 4, followed by conclusions in Sec-
tion 5.

2. Battery modelling

2.1. Battery equivalent circuit model

There have been numerous attempts to establish a precise bat-
tery model for achieving an accurate battery state estimation. The
battery equivalent circuit models consisting of circuit components
such as capacitors, resistors, diodes and voltage sources have been
widely studied and developed to capture dynamic characteristics of
a battery for reducing modelling errors [28e30]. These circuit-
based models are also applied to the battery SOC estimation due
to their state equations are intuitively derived from circuit analysis
for mathematical computation. In this paper, without the

Fig. 1. Schematic diagram of BECM.
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