Journal of Power Sources 318 (2016) 18-25

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Structural change during charge—discharge for iron substituted lithium manganese oxide

Mitsuharu Tabuchi ^{a, *}, Hiroyuki Kageyama ^a, Kei Kubota ^b, Hideka Shibuya ^c, Kyosuke Doumae ^c, Ryoji Kanno ^d

^a National Institute of Advanced Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan

^b Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 Japan

^c Tanaka Chemical Corporation, 45-5-10 Shirakata, Fukui, Fukui 910-3131 Japan

^d Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8502 Japan

HIGHLIGHTS

• Fe-substituted Li₂MnO₃ was prepared by coprecipitation-calcination method.

• On initial charging, Fe ion moved to the tetrahedral 8*j* site.

• Stability of layered rock-salt structure sensitive to the mode of initial charging.

ARTICLE INFO

Article history: Received 19 October 2015 Received in revised form 23 March 2016 Accepted 28 March 2016 Available online 7 April 2016

Keywords: Lithium-ion battery Positive electrode material Cation distribution Neutron diffraction EXAFS ⁵⁷Fe mossbauer spectroscopy

ABSTRACT

For this study, Fe-substituted Li₂MnO₃ (Li_{1+x}(Fe_{0.25}Mn_{0.75})_{1-x}O₂, 0 < x < 1/3) was prepared using coprecipitation—calcination. The change in the cation distribution was examined after charge—discharge using a monoclinic Li₂MnO₃ unit cell (*C*2/*m*). At the initial Li-extraction, Fe ion moved to the tetrahedral 8*j* site. At the end of charging, transition metals moved from 4*g* and 2*b* sites in (Mn, Fe)—Li layer to 2*c* and 4*h* sites in the Li-layer via 4*i* and 8*j* sites. The cation random distribution was maintained after the end of discharging. The stability of layered rock-salt phase after cycle testing depended on the mode of charging; although the positive electrode decomposed to a mixture of layered rock-salt and spinel phases by typical galvanostatic charging, the positive electrode remained a single phase with a layered rock-salt structure by application of stepwise charging. Careful control of the charging mode at the initial cycle is important for Fe-substituted Li₂MnO₃ positive electrode material.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Large-scale lithium-ion batteries are now a necessary power source for use in electrical vehicles. The constituent positive electrode material for the battery must have high capacity. Among the proposed positive electrode materials, Li-rich layered oxide, LiMO₂-Li₂MnO₃ ($M = Ni_{1/2}Mn_{1/2}$, $Ni_{1/3}Mn_{1/3}Co_{1/3}$) solid solution [1,2] is attractive because of its specific capacity higher than about 200 mAh·g⁻¹. Although the charge–discharge mechanism remains unclear, participation of oxide ion as a redox center as well as Co and Ni ions has been suspected [3–6]. Structural change during the

* Corresponding author. *E-mail address:* m-tabuchi@aist.go.jp (M. Tabuchi). charge—discharge cycle has also examined [5,7—9]. Lu and Dahn proposed oxygen loss from the structure after first charging to 4.8 V [7]. Jiang et al. observed stabilization of the cation random structure at discharged state after high-voltage charging at voltages higher than 4.6 V [9].

LiFeO₂–Li₂MnO₃ solid solution (Fe substituted Li₂MnO₃, Li_{1+x}(-Fe_yMn_{1-y})_{1-x}O₂, 0 < x < 1/3, $0 < y \le 0.5$) is also attractive as a highcapacity 3 V class positive electrode material (>200 mAh·g⁻¹) [10–12] because of its utilization of cheap and naturally abundant Fe. The complex charge–discharge mechanism was examined mainly using analytical TEM [13–15]. The sample with y = 0.5 was a composite consisting of layered Fe-substituted Li₂MnO₃ and cubic Mn-substituted LiFeO₂ [13]. On initial charging, Li extraction occurred from the cubic phase below 4.5 V. Then Li₂O extraction occurred from the layered phase above 4.5 V [14]. Oxide ion

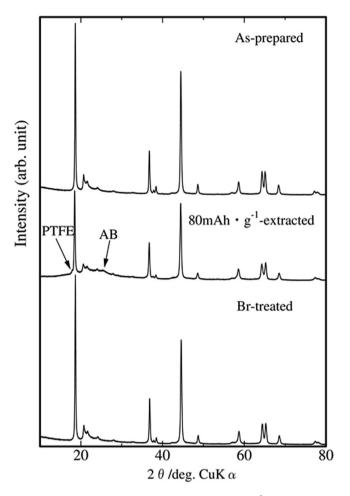


Fig. 1. X-ray diffraction patterns for as-prepared, 80 mAh $\cdot g^{-1}\text{-extracted}$, and Br-treated samples.

extraction and insertion was observed at the end of initial charging and discharging, respectively, suggesting that oxide ions act as a redox center not only during charging but also during discharging [15]. Stabilization of cation random structure was observed at 1 cycled sample [15] like in Ni substituted Li₂MnO₃ [9]. The electrochemical characteristics of sample with y = 0.3 were improved drastically using stepwise charging [16], as reported by Ito et al. [17]. Application of stepwise charging engenders suppression of the initial O₂ gas generation on charging up to 4.8 V and improves cyclability of C/Li_{1+x}(Fe_{0.3}Mn_{0.7})_{1-x}O₂ cell [17]. However, the effects of the stepwise charging on structural change and the cyclability remain unknown.

As described in this paper, the structural change of the sample with y = 0.25 was examined after stepwise application and galvanostatic charging up to the tenth cycle. *Ex-situ* X-ray Rietveld analysis was used mainly by combination with Fe and Mn K-edge X-ray absorption fine structure (XAFS), magnetization measurement, neutron diffraction, and ⁵⁷Fe Mössbauer spectroscopy.

2. Experimental

Li_{1+x}(Fe_{0.25}Mn_{0.75})_{1-x}O₂ has been prepared by coprecipitation—calcination method (0.25 mol/batch, as-prepared sample). For the coprecipitation process, a Fe—Mn mixed aqueous solution was prepared by dissolving Fe(NO₃)₃·9H₂O and MnCl₂·4H₂O (reagent grade; Wako Pure Chemical Industries Ltd.) into distilled water. The Fe—Mn solution was dripped into cooled LiOH solution including ethanol (antifreeze reagent) at -10 °C for 2–3 h to avoid the formation of spinel ferrite phases. The Fe—Mn coprecipitate was aged by bubbling air for 2 days. It was then isolated by filtration. The aged coprecipitate was mixed with LiOH aqueous solution including 0.375 mol of LiOH·H₂O. Then the mixture was dried at 100 °C. During the calcination process, the dried mixture was calcined at 850 °C for 1 h in air atmosphere after pulverization. The product was washed using distilled water, filtered, and then dried at 100 °C.

Table 1

Structural parameters resulted from X-ray Rietveld analysis using monoclinic layered rock-salt Li_2MnO_3 (C2/m) and cubic spinel ($Fd\overline{3}$ m) unit cells and spontaneous magnetization values obtained from magnetization measurement.

Sample	Layered rock-salt phase $(C2/m)$						Spinel phase($Fd\overline{3} m$)		Spontaneous magnetization/Gcm ³ ·g ⁻¹
	Fraction/%	a/Å	b/Å	c/Å	β /deg.	V/Å ³	Fraction/%	a/Å	
As-prepared	100	4.9673(6)	8.5809(7)	5.0304(4)	109.177(10)	202.5(7)	_	_	0.0054(10)
Br-treated	100	4.9513(7)	8.5638(8)	5.0269(5)	109.135(14)	201.4(9)	_	_	0.0005(7)
80 mAh/g extracted	100	4.9416(7)	8.5512(10)	5.0269(5)	109.212(11)	200.6(8)	_	_	0.008(3)
5c-S	100	4.9832(10)	8.6114(15)	4.9997(8)	109.628(16)	202.1(12)	_	_	0.008(2)
5d-S	100	5.0145(10)	8.6824(11)	5.0674(7)	109.303(18)	208.2(13)	_	_	0.008(2)
14d-S	100	5.0368(7)	8.6644(9)	5.0731(6)	109.405(10)	208.8(7)	_	_	0.0072(11)
1c-G	100	4.9680(11)	8.5914(16)	4.9717(8)	109.553(19)	200.0(13)	_	_	0.008(2)
1d-G	100	5.0795(10)	8.7965(13)	5.1046(7)	109.423(16)	215.1(12)	_	_	0.007(2)
10d-G	85.39	5.0346(11)	8.8560(14)	5.0920(9)	109.113(13)	214.5(10)	14.61	8.532(5)	0.01239(8)

(b) Transition metal occupancy at each site (g) and sum of occupancies (g_{total}) for Each phase

Sample	Layered rock-salt phase (C2/m)								Spinel phase($Fd\overline{3} m$)		
	g _{4g}	g _{2b}	g _{2c}	g _{4h}	g _{4i}	g _{8j}	g_{total}^{a}	g_{8a}	g _{16d}	g _{total} ^b	
As-prepared	0.742(4)	0.451(3)	0(fixed)	0.0838(19)	0(fixed)	0(fixed)	0.701(5)	_	_	_	
Br-treated	0.739(4)	0.409(4)	0(fixed)	0.011(2)	0(fixed)	0.0248(9)	0.668(7)	_	_	_	
80 mAh/g extracted	0.606(4)	0.403(4)	0.0735(3)	0.067(2)	0(fixed)	0.0681(9)	0.698(7)	_	_	_	
5c-S	0.566(7)	0.564(10)	0.119(5)	0.119(3)	0.065(4)	0.071(2)	0.822(14)	_	_	_	
5d-S	0.567(4)	0.522(6)	0.142(3)	0.047(2)	0.047(2)	0.0357(15)	0.743(11)	_	_	_	
14d-S	0.580(4)	0.647(5)	0 (fixed)	0.1684(17)	0 (fixed)	0.0682(7)	0.805(16)	_	_	_	
1c-G	0.511(6)	0.577(9)	0.176(5)	0.124(3)	0.081(3)	0.0811(19)	0.837(12)	_	_	_	
1d-G	0.501(4)	0.529(7)	0.215(4)	0.162(2)	0.033(3)	0.0334(16)	0.756(10)	_	_	_	
10d-G	0.498(5)	0.522(9)	0.238(7)	0.048(5)	0.104(5)	0.092(3)	0.809(14)	0.97(2)	1(fixed)	2.97(2)	

^a g_{total} means transition metal content per chemical formula, as calculated from the equation $g_{\text{total}} = (2g_{4g} + g_{2g})/3 + (g_{2c} + 2g_{4h})/3 + 2(g_{4i} + 2g_{8j})/3$. ^b g_{total} means transition metal content per chemical formula, as calculated from the equation $g_{\text{total}} = g_{8a} + 2g_{16d}$. Download English Version:

https://daneshyari.com/en/article/1285301

Download Persian Version:

https://daneshyari.com/article/1285301

Daneshyari.com