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HIGHLIGHTS

e An adaptive SoE estimation approach is established.

e A data-driven model is established for SoE estimation.

o The forgetting factor RLS method is employed for parameter identification.

e Dynamic current and temperature profiles are performed on the LiFePOy4 cells.
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ABSTRACT

With the growing number of electric vehicle (EV) applications, the function of the battery management
system (BMS) becomes more sophisticated. The accuracy of remaining energy estimation is critical for
energy optimization and management in EVs. Therefore the state-of-energy (SoE) is defined to indicate
the remaining available energy of the batteries. Considering that there are inevitable accumulated errors
caused by current and voltage integral method, an adaptive SoE estimator is first established in this
paper. In order to establish a reasonable battery equivalent model, based on the experimental data of the
LiFePO4 battery, a data-driven model is established to describe the relationship between the open-circuit
voltage (OCV) and the SoE. What is more, the forgetting factor recursive least-square (RLS) method is
used for parameter identification to get accurate model parameters. Finally, in order to analyze the
robustness and the accuracy of the proposed approach, different types of dynamic current profiles are
conducted on the lithium-ion batteries and the performances are calculated and compared. The results
indicate that the proposed approach has robust and accurate SoE estimation results under dynamic
working conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

escapes from positive and negative materials when charging and
discharging. The positive electrode materials of lithium-ion batte-

With the growing concerns on the depletion of energy resources
and global warming problems caused by conventional internal
combustion engine vehicles, electric vehicles (EVs) have drawn
more of people's attentions. The battery is the key to the devel-
opment of EVs. Lithium-ion batteries as featured by high energy
density, low self-discharge rate and long cycle life have found wide
applications in the area of EV power supply systems [1]. A lithium-
ion battery is a high-energy battery in which Li + embeds into and

* Corresponding author.
E-mail address: chenzh@ustc.edu.cn (Z. Chen).

http://dx.doi.org/10.1016/j.jpowsour.2015.11.087
0378-7753/© 2015 Elsevier B.V. All rights reserved.

ries are intercalation compounds of lithium-ion, commonly LiCoO»,
LiNiO, LiMnQy4, LiFePOy, LiNixCoyMn(j_x_y)O2, and so on. The
negative electrode materials are commonly LixCg, TiS,, V205, and so
on. There is a recent trend in lithium-ion battery research com-
munity gearing toward high rate materials that can charge/
discharge at very fast rates [2]. The lithium-ion battery is a strong
nonlinear and time variability system for its complicated electro-
chemical process. The estimation of cell state parameters, such as
the state-of-charge (SoC) and state-of-energy (SoE), plays an
important role in ensuring vehicle stability and reliability.

The SoC reflects the residual capacity of a battery and is defined
as the ratio of the remaining capacity to the total capacity as:
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t
SoC(t) = SoC(to) + ne / i(r)dr/Cx 1)
to

where So((t) is the SoC value at time t, So((tp) is the SoC value at
initial time tg, i(7) is the current at time 7 and Cy represents the total
capacity of the battery. n. denotes the coulombic efficiency of
battery. In this sense, exact energy information cannot be known
from the estimation of SoC since it is a percentage of the battery
capacity. The SoE is defined to indicate the remaining available
energy of the batteries. The SoE can be expressed as the following
equation:

t
SOE(t) — SoE(ty) + 1 / P(r)dr/Ex )
to

where SoE(t) is the SoE value at time t, SoE(tp) is the SoE value at
initial time to, P(7) represents the power at time 7 and Ey represents
the nominal energy of the battery. n, denotes the energy efficiency
of battery.

Compared with the SoC which varies linearly with the charge/
discharge current, the SoE is nonlinear with the current because of
the consideration of energy loss on the internal resistance, the
electrochemical reactions and the decrease of the OCV [3—6]. For a
more complete and applicable BMS, the estimation of SoE is more
meaningful to predict the remaining driving range (RDR) of the EVs
and can indicate the actual available energy of the batteries.

In recent years, large numbers of estimation approaches of
battery state have been proposed in literature, such as the coulomb
counting method [7], the OCV based approach [8,9], nonlinear
observer method [10,11], the fuzzy logic method [12], the neural
network model method [13] and the model based algorithm [14]. In
real system, the estimation error increases conspicuously due to the
accumulated error introduced by current or voltage drift of sensors.
A small error on the predicted voltage will lead to a larger deviation
in SoC due to that lithium-ion batteries have a relatively flat voltage
curve over the SoC. Therefore model-based estimation methods
such as the extended Kalman filter (EKF) [15—19], unscented Kal-
man filter (UKF) [20], particle filter (PF) [21—23] and unscented
particle filter (UPF) [24,25] have been attracted more of people's
attention. The model-based estimator can precisely estimate the
voltage and adjust the gain according to the terminal voltage error
between the measured values and the estimated values timely. The
core content of this method used for state estimation is to establish
a reasonable battery model and the performance is highly depen-
dent on the prediction precision of the battery model. In order to
get accurate SoE estimation results, an accurate battery model is
desperately needed. The most commonly used battery models can
be divided into three types, the electrochemical models, the neural
network models and the equivalent circuit models. The electro-
chemical model based on the electrochemical mechanism of the
battery can accurately reflect the characteristics of the battery. The
current commonly used electrochemical models for battery state
estimation include the shepherd model [26], the Unnewehr uni-
versal Model [26], the Nernst model [18] and the combined Model
[18]. The neural network model can simulate the high nonlinearity
of lithium-ion batteries, but requires a large number of training
samples [13]. Based on the dynamic characteristics and working
principles of the battery, the equivalent circuit model is developed
by using resistors, capacitors, and voltage sources to form a circuit
network [27].

The term SoE is employed to represent the percentage of present
remaining energy with the nominal total energy. In Ref. [3] Wang

et al. used a combined electrochemical model and proposed a
method for joint estimation of both SoC and SoE. Liu et al. [6]
developed a neural network model for SoE estimation which
considered the OCV, the discharge current and the temperature. He
et al. [28] proposed a Gaussian model which is adaptive for both
LiFePO4 and LiMn,04 batteries. The simulation result agrees well
with the experimental result.

In this study, an adaptive SoE estimator is proposed. Based on
the experimental data of the LiFePO4 battery, a data-driven model is
established to describe the relationship between the OCV and the
SoE. What is more, the forgetting factor recursive RLS method is
used for parameter identification to get accurate model parameters.
This paper is organized as follows: In Section 2, a data-driven model
for SoE estimation is first proposed. Then the forgetting factor RLS
method is introduced for on-line parameter identification to get
accurate model parameters. In Section 3, the algorithm and the
implementation of the adaptive SoE estimator is proposed. In
Section 4, different types of dynamic profiles are conducted on the
lithium-ion batteries to verify the accuracy of the proposed
method. The results show that accurate and robust SoE estimation
results can be obtained by the proposed method. Finally, the con-
clusions of this work are given in Section 5.

2. Battery model
2.1. Battery model description

It is difficult to obtain an completely accurate model to describe
the relationship between the terminal voltage and varied dynamic
loads, since the lithium-ion battery is a very complex electro-
chemical system with physical and chemical processes. The
equivalent circuit model has been widely used in various types of
modeling and simulation for its high accuracy. Depending on
different applications and the required accuracy, different types of
cell models have been developed in literature. Among which, the
Thevenin equivalent circuit model is an effective model to repre-
sent the battery's dynamics.

As shown in Fig. 1, the Thevenin equivalent circuit model in-
cludes an open-circuit voltage U, Which is used to represent the
voltage source and describe the static character of the cell, a serial
resistance R, which is used to describe the cell ohmic internal
resistance, a RC network which describes the cell polarization effect
is composed by a polarization resistance R, and a polarization
capacitance Cp,. Based on the electric circuit analysis, the electrical
behavior of the cell model can be expressed as:

Up = ~Up/CoRy +i/Cp (3)
Ut = Uoey — Up — iRy (4)
where i represents the load current (negative for charge, positive

for discharge), Uy, represents the open-circuit voltage, U; repre-
sents the terminal voltage, U, represents the polarization voltage
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Fig. 1. Battery equivalent circuit model.
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