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h i g h l i g h t s

� This approach is free of adjusting parameter.
� The DRT does not contain pseudo peaks.
� Discontinuities in DRT can be captured.
� Well-established algorithm is available.
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a b s t r a c t

A new Tikhonov regularization approach without adjusting parameters is proposed for reconstructing
distribution of relaxation time (DRT). It is capable of eliminating the pseudo peaks and capturing dis-
continuities in the DRT, making it feasible to resolve the number and the nature of electrochemical
processes without making assumptions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is the most
frequently used methodology to study the electrolyte/electrode
behaviours in electrochemical devices, for instance fuel cells,
electrolyzers, batteries, and capacitors [1]. The electrochemical
processes embedded in the EIS are usually characterized using
some well-known representations of the EIS, for example the
Nyquist plot, the imaginary impedance vs. frequency plot, etc. The
number and nature of the electrochemical processes are identified

by examining the number of arcs in the EIS curve and by curve-
fitting with an equivalent circuit model, respectively [2]. Howev-
er, this approach could underestimate the number of processes and
oversimplify their electrochemical nature, as EIS curve is an inte-
gration of the responses of all the elementary processes and some
elementary processes may not be shown in the curve [3]. In recent
years, distribution of relaxation times (DRT) has shown remarkable
capability to differentiate the electrochemical processes and thus is
a powerful tool for analyzing electrochemical power sources. The
DRT is defined implicitly by Refs. [4,5],
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where F(t) is the DRT function at the relaxation time t, and Z00(u)
denotes the imaginary part of the impedance at the angular fre-
quency u. Characterized by individual peaks in the plot of F(t)
versus log10(t), the electrochemical processes can be differentiated
from each other to the most extent. The integral area of a specific
peak corresponds to the resistance of a specific elementary process.
Although conceptually simple, the DRT function has to be recon-
structed numerically from the EIS data by solving Eq. (1), which is
very challenging. The Tikhonov regularization is commonly used
for reconstructing the DRT function [4e11]. By optimizing the
regularization factor, the DRT function can be reconstructed prop-
erly. However, pseudo peaks are sometimes created in the recon-
structed DRT plot, limiting the accuracy of this method. Very
recently, Ciucci et al. proposed a Bayesian approach by considering
the regularization factor as a hyper prior function of roughness of
the reconstructed DRT function [12]. It was found that the recon-
structed DRT functions were identical to the ideally analytical DRT
solutions with proper parameters in the hyper prior function.
However, as adjusting parameters are used, the accuracy of the
results could be uncertain if the parameters were not properly set.

In this work, we propose a new Tikhonov regularization
approach without adjusting parameters. The optimal DRT solution
without pseudo peaks and the distribution of regularization factor
can be obtained simultaneously by using a well-established algo-
rithm. Using this approach, the Gerischer type DRT can be resolved
clearly from the impedance of a symmetric La0.6Sr0.4Co0.2Fe0.8O3
(LSCF)/Ce0.9Sm0.1O1.95 (SDC)/LSCF solid oxide cell, and the cathodic
and anodic processes for a NieZr0.92Y0.08O1.96 (YSZ)/YSZ/
(La0.80Sr0.20)0.95MnO3�x (LSM)-YSZ solid oxide cell are well sepa-
rated. Finally, we propose a generic Tikhonov approach with higher
orders distributions of regularization factor. The present Tikhonov
approach is the first-order approximation of the generic Tikhonov
approach.

2. Theory

Theoretically, the DRT function F(t) can be reconstructed by Eq.
(1) only if the impedance is linear, causal, and stable [13]. In other
words, the real part Z0(u) and the imaginary part Z00(u) should yield
Kramers-Kronig relations, which can be validated using ZSimpWin
software, or the computer programs developed by B.A. Boukamp or
Ivers-Tiff�ee group. The reconstruction is to calculate the discrete
DRT set {F(tn)jn ¼ 1, 2, …, N} using the discrete impedance set
{Z00(un)jn ¼ 1, 2, …, N}, where tn ¼ 1/un and N denotes the number
of the discrete impedance points collected. In the literature, {F(tn)j
n ¼ 1, 2, …, N} was calculated by using a constant regularization
factor. However, the reconstruction quality depends upon the value
of regularization factor. In this work, we postulate a distribution of
regularization factor (DRF), {l0(tn)jn ¼ 2, 3, …, N � 1} across the
relaxation timescale. Combining with the discretization of Eq. (1),
the optimal DRT and DRF could be obtained by minimizing the
objective function err using a new Tikhonov regularization, given
by the following matrix formulation,

err ¼ ðGF� ZÞTðGF� ZÞ þ ðD0FÞTdiagðl0Þ2ðD0FÞ
þ FTFðD1l0ÞTðD1l0Þ (2)

where F is a non-negative column vector of N components, with
Fn ¼ F(tn); l0 is a column vector of (N � 2) components, with

l0n ¼ l0(tn) for n ¼ 2, 3, …, N � 1; G is a (N þ 1) � N matrix, with
Gi,j ¼ (ui/uj)/[ppd(1þu2

i /u
2
j )] for i ¼ 1, 2,…, N and j ¼ 1, 2,…, N, and

GNþ1,j ¼ 1/ppd for j ¼ 1, 2, …, N; ppd denotes the number of
impedance points per frequency decade; Z is a column vector of
(N þ 1) components, with Zn ¼ �Z00(un) for n ¼ 1, 2, …, N, and ZNþ1
is the entire polarization resistance of the impedance (Rp). When
the absolute values of Z00(u1) and Z00(uN) are close to zero, say
smaller than 1% of jZ0(u1) � Z0(uN)j, ZNþ1 can be represented by
jZ0(u1) � Z0(uN)j. Otherwise, Rp may be estimated by extrapolation,
such as the method proposed by J. Matthew Esteban and Mark E.
Orazem [14]; D0 is a (N � 2) � N matrix, with D0n,[n,nþ1,nþ2] ¼ [�1
2 �1] and the other components of D0 are zeros; D1 is a
(N � 4) � (N � 2) matrix, with D1n,[n,nþ1,nþ2] ¼ [�1 2 �1] and the
other components of D1 are zeros; the superscript T is short for
transposition of matrix. It is noted that the objective function de-
grades into the one of the conventional Tikhonov approach when
the DRF is a constant (say l) throughout the timescale. In this case,
l2 corresponds to the regularization factor of the conventional
Tikhonov approach. The objective function err contains three terms.
The first term represents the deviation between the original
impedance Z and the one back-calculated by the DRT function GF.
The second term represents the roughness of the DRT function,
weighted by the DRF function. This term is the core of the new
regularization. The interplay between DRT and DRF across the
relaxation timescale can be captured. For example, minimizing err
permits the roughness around the discontinuities of DRT (if any)
being significant by decreasing the corresponding DRF values. Thus,
the discontinuities of DRT could be captured, which will be verified
in what follows. The discontinuities in the DRT function are com-
mon for electrochemical cells, especially those containing mixed
ionic-electronic catalysts, for example LSCF [15]. In addition, this
regularization is also capable of capturing the continuities in the
DRT function by increasing the corresponding DRF values. Thus,
pseudo peaks can be avoided, which will also be verified in what
follows. The third term represents the roughness of the DRF func-
tion. That is, we expect the DRF is a continuous function of relax-
ation time. Essentially, a continuous DRF means the strength of the
regularization at neighboring relaxation times does not vary
apparently. This term is crucial to preventing over-fitting of the DRT
function. Well-established algorithms are available to minimize Eq.
(2). One recommendation is the ‘fmincon’ function with the trust-
region-reflective algorithm built in Matlab package, as used in
this work. The trust-region-reflective algorithm is simple yet
powerful in optimization, especially in minimizing the objective
functions like Eq. (2), which have constrains of only bonds (F � 0)
and analytic formulas for gradient and Hessian matrix [16]. The
initial value of DRF should be sufficiently high, so that the regula-
rization during the iteration is strong enough to prevent over-
fitting of DRT. We use an uniform DRT (Fi ¼ Rp � ppd/N) and an
uniform DRF (l0i ¼ ppd/N) as the initial values. One can also use the
optimized solutions by the conventional Tikhonov regularization as
the initial values. The two choices of initial values eventually
converge to nearly identical solutions.

3. Results and discussion

We test this approach by using three case studies. The first case
uses the synthetic impedances of typical elemental circuits and an
integrated circuit model to validate the accuracy of the new
approach and to show the robustness against noise. The second
case uses the impedance of a symmetric LSCF/SDC/LSCF solid oxide
cell to show the capability of capturing the discontinuity in DRT
function and the capability of eliminating pseudo peaks for use in
realistic impedance. The third case uses the impedances of a Ni-
YSZ/YSZ/LSM-YSZ solid oxide cell to show the merits of resolving
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