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� Discussion of challenges and issues for on-board capacity estimation.
� Review of model-based, electrochemical model-based and data driven-based approaches.
� Review of ICA/DVA and aging prediction-based models.
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a b s t r a c t

This work provides an overview of available methods and algorithms for on-board capacity estimation of
lithium-ion batteries. An accurate state estimation for battery management systems in electric vehicles
and hybrid electric vehicles is becoming more essential due to the increasing attention paid to safety and
lifetime issues. Different approaches for the estimation of State-of-Charge, State-of-Health and State-of-
Function are discussed and analyzed by many authors and researchers in the past. On-board estimation
of capacity in large lithium-ion battery packs is definitely one of the most crucial challenges of battery
monitoring in the aforementioned vehicles. This is mostly due to high dynamic operation and conditions
far from those used in laboratory environments as well as the large variation in aging behavior of each
cell in the battery pack. Accurate capacity estimation allows an accurate driving range prediction and
accurate calculation of a battery's maximum energy storage capability in a vehicle. At the same time it
acts as an indicator for battery State-of-Health and Remaining Useful Lifetime estimation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Lithium-ion batteries (LIBs), as an alternative energy storage
technology to lead-acid or nickel-metal hydride batteries, are
becoming more popular for various applications, such as electric
and hybrid electric vehicles. Their higher specific or volumetric
power and energy density, high cycle lifetime and decreasing costs
have made them more attractive for the aforementioned applica-
tions. Their operation strategy needs to be optimized in order to
extend their lifetime (durability) and prevent critical operating

conditions (e.g., overcharging, charging at low temperatures or
high currents rates), which yield accelerated aging. In Ref. [1], the
authors provide a wide overview regarding challenges and issues
for health prognostic of LIBs. Furthermore, B�arre et al. [2] discusses
various aging mechanisms of LIBs in EVs. Techniques based on
electro-chemical models, equivalent-circuit models, statistical
models, etc. for impedance rising and capacity fading during a
battery's lifetime in order to estimate State-of-Health (SoH) and
Remaining Useful Lifetime (RUL) are addressed and compared.
Indeed, the topic of on-board capacity estimation has not been
sufficiently discussed in the past. The main scope of this study is to
give an overview over available techniques for on-board capacity
estimation, while the strengths and weaknesses of each method-
ology are discussed.

Battery capacity with ampere hours or ampere seconds as a unit
corresponds to the amount of charge extractable from the battery
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until cut-off discharge voltage limit is reached when starting from a
fully charged state. One important issue is that the capacity is not a
constant parameter, and it decays over the battery's lifetime due to
internal aging processes when the battery is cycled or even if it is
not being used due to calendar aging [3,4]. In automotive applica-
tions, battery temperature, discharging and charging current rates,
the Depth-of-Discharge (DoD) during battery operation and the
State-of-Charge (SoC) during rest periods are the major degrada-
tion factors [1]. From an electro-chemical point of view, the ca-
pacity loss of LIBs generally occurs because of the loss of cyclable
lithium due to SEI formation, and the impedance increase is mainly
due to side reactions occurring in the anode. Furthermore, aging
processes due to, e.g., defoliation of activemass, increase of internal
resistance or contact loss can lead to capacity loss [1,2,5e8].
However, SEI formation does not occur for LIBs with Li4Ti5O12 (LTO)
anode materials, and their capacity loss happens mainly due to
capacity loss in the cathode [9,10].

Due to the decrease of battery performance over the battery
lifetime, an accurate prediction of SoH and State of Energy (SoE) is
essential. SoH and SoE are time dependent variables, which are
often consulted to track the characteristic changes of the LIBs while
the battery is aging. Insufficient estimation accuracy may yield
serious or even catastrophic issues. (e.g., Prediction of Battery packs
fail or inaccurate estimation of driving range).

Actual battery capacity and actual battery impedance are
important indicators for SoH estimation. The SoH is usually defined
either.

- as a ratio between the actual battery capacity at nominal con-
ditions (nominal temperature and nominal discharge current)
and the battery's nominal capacity, i.e., SoHc ¼ Cactual/Cnominal, or

- as a ratio between the actual battery impedance value at nom-
inal conditions and its nominal impedance, i.e., SoHr ¼ Ractual/
Rnominal.

Generally, for applications where the available energy in the
battery plays the most important role, such as electric vehicles
(EVs) or plug-in hybrid EVs, the end of life (EoL) criteria of a battery

is often defined as the decrease of its capacity to 70% or 80% of its
initial value [11e13]. In applications where the available power is
more important, such as in pure hybrid electric vehicles (HEVs), the
EoL is often defined as being reached when the battery impedance
is doubled [11]. At the same time, for SoE, the EoL criteria is defined
as being reached when its value is limited to 20% of the energy loss
in comparison to its nominal value [14].

In Fig. 1, a possible integration of capacity estimation algorithm
in the battery management systems (BMS) is illustrated.

Generally, methods for on-board capacity can be divided into
the following four categories Fig. 2:

1. Voltage-based estimationmethods using open circuit voltage or,
strictly speaking, the electro motive force (EMF) and SoC cor-
relation during an idle or operation time,

Nomenclatures

AEKF Adaptive extended Kalman filter
BMS Battery management system
CCeCV Constant currenteconstant voltage
CDKF Central difference Kalman filter
DEKF Dual extended Kalman filter
DVA Differential voltage analysis
EoL End of life
EKF Extended Kalman filter
EMF Electro motive force
EV Electric vehicle
ECM Equivalent circuit model
HEV Hybrid electric vehicle
ICA Incremental capacity analysis
KF Kalman filter
LIB Lithium-ion battery
LFP Positive electrode active materials with a common

formula LiFePO4

LS Least square
LTO Negative electrode active materials with a common

formula Li4Ti5O12

NEDC New European Driving Cycle
NMC Positive electrode active materials with a common

formula of Lix(NixMnyCoz)O2

OCV Open circuit voltage
PDE Partial differential equation
PDF Probability density function
PHEV Plug-in hybrid electric vehicle
RLS Recursive least square
SampEn Sample entropy
SEI Solid electrolyte interface
SPM Single particle model
SoH State-of-Health
SoC State-of-Charge
SoF State-of-Function
SPKF Sigma point Kalman filter
UDDS Urban dynamometer driving schedule
UKF Unscented Kalman filter
V2G Vehicle-to-grid
WLS Weighted least squares
WRLS Weighted recursive least squares

Fig. 1. Integration framework of capacity estimation in the context of a simplified
battery management system.
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