

Available online at www.sciencedirect.com

Journal of Power Sources 171 (2007) 966-980

Review

www.elsevier.com/locate/jpowsour

Advances in Fe(VI) charge storage Part I. Primary alkaline super-iron batteries

Xingwen Yu^{a,*}, Stuart Licht^b

^a Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC, Canada V6T 1Z3 ^b Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, United States

> Received 27 May 2007; accepted 4 June 2007 Available online 26 June 2007

Abstract

Recent advances in super-iron batteries, based on an unusual Fe(VI) cathodic charge storage, are presented. Fe(VI) cathodes that have been demonstrated in super-iron batteries include the synthesized Fe(VI) compound with three-electron cathodic charge capacity Na₂FeO₄, K₂FeO₄, Rb₂FeO₄, Cs₂FeO₄ (alkali Fe(VI) salts), alkali earth Fe(VI) salts BaFeO₄, SrFeO₄, and also a transition Fe(VI) salt Ag₂FeO₄ which exhibits a five-electron cathodic charge storage. This paper focus on the primary alkaline Fe(VI) charge storage in aqueous electrolyte systems. Primary alkaline super-iron batteries exhibit a higher capacity than conventional alkaline batteries. Configuration optimization, enhancement and mediation of Fe(VI) cathode charge transfer of primary Fe(VI) alkaline batteries are summarized. Composite Fe(VI)/Mn(IV or VII), Fe(VI)/Ag(II) and zirconia coating stabilized Fe(VI)/Ag(II) cathode alkaline batteries are also illustrated.

Keywords: Fe(VI); Charge storage; Super-iron battery; Primary; Alkaline electrolyte

Contents

1.	Introduction		
2.	Fundamentals and charge storage advantages of primary alkaline super-iron batteries		967
	2.1.	Fundamentals of alkaline super-iron batteries	967
	2.2.	Charge storage advantages of alkaline super-iron batteries: comparison with conventional MnO ₂ /Zn alkaline battery	968
3.	Optin	nization and charge transfer enhancement of K ₂ FeO ₄ , BaFeO ₄ alkaline super-iron batteries	969
	3.1.	Discharge efficiency of K ₂ FeO ₄ , BaFeO ₄ alkaline super-iron batteries and SrTiO ₃ , Ba(OH) ₂ additives	969
	3.2.	Mn(IV), Co(III) modifiers and their effects on super-iron batteries	969
	3.3.	Various carbon conductors and their effects on super-iron batteries	970
	3.4.	Fluorinated polymer graphite conductor and its effects on super-iron batteries	970
4.	Chemical mediation of Fe(VI) charge transfer and Fe(VI)/Mn composite super-iron batteries		971
	4.1.	Inhibition of Fe(VI) charge transfer	971
	4.2.	Chemical mediation of Fe(VI) charge transfer	972
	4.3.	K ₂ FeO ₄ /Mn(VII or VI) composite super-iron batteries	972
	4.4.	BaFeO ₄ /Mn(VII) composite super-iron batteries	974
	4.5.	BaFeO ₄ /MnO ₂ composite super-iron batteries	974
5.	Silver mediation of Fe(VI) charge transfer & zirconia coating stabilized Fe(VI)/AgO composite super-iron battery		975
	5.1.	Chemical and electronic mediation of Fe(VI) charge transfer	975
	5.2.	$MFeO_4$ (M = K ₂ or Ba)/AgO composite cathode super-iron batteries	976

^{*} Corresponding author. Tel.: +1 604 728 8895; fax: +1 604 822 6003. *E-mail address:* xingwenyu@yahoo.com (X. Yu).

^{0378-7753/\$ –} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2007.06.052

	5.3.	Constant power comparison of MnO ₂ , BaFeO ₄ , and AgO/K ₂ FeO ₄ cathodes	977
	5.4.	Stabilization of K ₂ FeO ₄ cathode with zirconia coating	977
6.	Catho	odic charge transfer of Na(K)FeO ₄ , Rb(K)FeO ₄ , Cs ₂ FeO ₄ , SrFeO ₄ and Ag ₂ FeO ₄ super-iron batteries	978
7.	Sumn	naries	979
	Refer	ences	979

1. Introduction

Fe(VI) species have been known for over a century, although its chemistry remains relatively unexplored [1–3]. Fe(III) compounds had been explored both as cathode [4] and anode [5] materials in electrochemical storage cells, however, higher valent, greater charge capacity, iron salts had not been previously considered, and the fundamental solubility and stability constraints on higher valent iron chemistry were not well established. Indeed, the perception that Fe(VI) species were intrinsically unstable was incorrect [6]. Recently, cathodes incorporating hexavalent, Fe(VI), sustaining facile, energetic, cathodic charge transfer have been introduced [6–32]. Resources to prepare Fe(VI) salts are plentiful and clean. Iron is the second most abundant metal in the earth's core, and the Fe(VI) reduction product is non-toxic ferric oxide. Fe(VI) salts can exhibit substantially higher than conventional cathodic storage capacities [6-32]. Due to their highly oxidized iron basis, multiple electron transfer, and high intrinsic energy, it has been defined high oxidation state iron compounds as 'super-iron's and the new electrochemical storage cells containing them as 'super-iron' batteries [6].

Capacity, power, cost, and safety factors have led to the annual global use of approximately 6×10^{10} primary batteries, but further advances are limited by the low energy capacity of their cathodes. New higher capacity, environmentally benign and cost effect cathode materials are needed. International interest in Fe(VI) electrochemistry is growing, including research efforts in China, Canada, Europe, and Japan [33–36]. Favorable battery cathodes characteristics are low solubility, stability, facile charge transfer, and high charge capacity, and oxidative electrochemical potential. K₂FeO₄, prepared as described in Ref. [11], is particularly robust. So far, the controlled syntheses of a wide range of Fe(VI) salts have been probed [9,11–13,18,23,25], including a direct route for their electrochemical synthesis from iron metal [23].

This paper focuses on the recent advances in Fe(VI) charge storage in aqueous electrolyte systems and the primary alkaline super-iron batteries.

2. Fundamentals and charge storage advantages of primary alkaline super-iron batteries

In 1999, Licht's group introduced a class of batteries, referred to as super-iron batteries, containing a cathode utilizing a common material (iron) in an unusual (+6) valence state [6]. The cathode is based on abundant starting materials and is compatible with an alkaline electrolyte and zinc anode. Among the different types of aqueous primary batteries available on the market, the Zn–MnO₂ system possesses the dominant share for over a century because of its appropriate performance and low cost. The storage capacity of the aqueous MnO₂/Zn battery is limited by the charge capacity of MnO₂ (308 mAh g⁻¹), compared to that of Zn (820 mAh g⁻¹). Replacement of the MnO₂ cathodes in these cells with a more energetic cathode such as Fe(VI) compounds can substantially increase the energy storage capacity of these cells. For example, using the same zinc anode and electrolyte, Fe(VI) cathode batteries were shown to provide 50% more energy capacity than in conventional alkaline batteries [6].

2.1. Fundamentals of alkaline super-iron batteries

Using Fe(VI) compounds as charge storage materials is based on the three-electron reduction of Fe(VI) via Eq. (1) or Eq. (2) (as the anhydrous product), which represent energetic and highcapacity source of cathodic charge [6]:

$$FeO_4^{2-} + 3H_2O + 3e^- \rightarrow FeOOH + 5OH^-$$
(1)
$$FeO_4^{2-} + (5/2)H_2O + 3e^- \rightarrow (1/2)Fe_2O_3 + 5OH^-,$$

$$E = 0.5 - 0.65 \text{ V versus SHE}$$
(2)

So far, a class of Fe(VI) salts are successfully synthesized, include the alkali Fe(VI) salts (high purity K₂FeO₄, Cs₂FeO₄, Rb₂FeO₄ and K_xNa_(2-x)FeO₄, low purity Li₂FeO₄), high purity alkali earth Fe(VI) salts (BaFeO₄ and SrFeO₄) and a transition metal Fe(VI) salt (Ag₂FeO₄). Theoretical three-electron charge capacity of the Fe(VI) salts are determined as: 3 F MW^{-1} , from the salt molecular weight, MW(g mol⁻¹) and the Faraday constant (F = 96,485 coulomb mol⁻¹ = 26,801 mAh mol⁻¹). Theoretical capacities of various alkali and alkali earth Fe(VI) salts are listed in Table 1.

 Ag_2FeO_4 is of interest, as this Fe(VI) salt commands an intrinsic cathodic capacity that includes not only the threeelectron Fe(VI) reduction, but also the single electron reduction of each of two Ag(I) (as shown in Eq. (3)), for at total 5 Faraday

Table 1	
Theoretical three-electron charge capacities of various Fe(VI) salts	

Fe(VI) salts	Theoretical capacity $(mAh g^{-1})$		
Li ₂ FeO ₄	601		
Na ₂ FeO ₄	485		
K ₂ FeO ₄	406		
Rb ₂ FeO ₄	276		
Cs ₂ FeO ₄	209		
SrFeO ₄	388		
BaFeO ₄	313		

Download English Version:

https://daneshyari.com/en/article/1286421

Download Persian Version:

https://daneshyari.com/article/1286421

Daneshyari.com