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h i g h l i g h t s

� A novel SOH estimation method based on Dynamic Bayesian Networks is proposed.
� The SOH can be estimated in an online manner.
� Only terminal voltages during the constant charge process should be measured.
� The estimated SOH can be provided inherently as either a fuzzy or an exact value.
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a b s t r a c t

Li-ion batteries are widely used in energy storage systems, electric vehicles, communication systems, etc.
The State of Health (SOH) of batteries is of great importance to the safety of these systems. This paper
presents a novel online method for the estimation of the SOH of Lithium (Li)-ion batteries based on
Dynamic Bayesian Networks (DBNs). The structure of the DBN model is built according to the experience
of experts, with the state of charges used as hidden states and the terminal voltages used as observations
in the DBN. Parameters of the DBN model are learned based on training data collected through Li-ion
battery aging experiments. A forward algorithm is applied for the inference of the DBN model in or-
der to estimate the SOH in real-time. Experimental results show that the proposed method is effective
and efficient in estimating the SOH of Li-ion batteries.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the advantages of high cell voltage, low mass, low self-
discharge and long cycle life, Li-ion batteries are widely used in
energy storage systems, electric vehicles (EVs), communication
systems, etc. Energy storage is an enabling technology for power
system integration, as it can supply more flexibility for peak
shaving and load balancing to the grid, providing a backup to
intermittent renewable energy. An energy storage system is also
the key component of distributed power systems or smart-grids. In
energy storage systems, Li-ion batteries can provide mobile and
highly flexible storage capacity and can be placed at several
different locations of the grid to ensure efficiency. EVs have
numerous advantages over internal combustion engine vehicles in
terms of operational convenience, cleanliness, and energy effi-
ciency, and Li-ion batteries are used as main power sources for

them. In communication systems, Li-ion batteries are used as sec-
ondary power sources. The battery states, such as the state of
charge (SOC) and the state of health (SOH), are very important to
the safety of these systems [1]. The SOC depicts the remaining ca-
pacity that can be drawn from a battery, while the SOH is a measure
of the battery's ability to store and deliver electrical energy. The SOC
reflects the short-term state of a battery, while the SOH depicts the
long-term state of a battery. To maintain optimal battery perfor-
mance and maximize lifespan of a battery unit, a battery manage-
ment system (BMS) is often used and is of great essence and
significance [2,3]. Currently, many SOC estimation methods have
been proposed in the literature, and a subset of them have been
used in BMS implementations successfully [4,5]. However, there is
still much work that needs to be done for the estimation of SOH.

SOH is defined as the ratio of the current maximum capacity of a
battery to its nominal capacity as follows:

SOH ¼ Qcmax=Qn � 100% (1)

where Qcmax denotes the current maximum capacity and Qn refers
to the nominal capacity of the battery.
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So far, the most reliable means to determine SOH is through off-
line discharge testing of batteries [6]. However, off-line testing is
time-consuming and usually requires specialized equipment.

Alternately, the internal resistance of a battery increases
continuously, along with the digression of the maximum capacity,
during its aging process [7]. A SOH estimationmethod based on the
internal resistance estimation was proposed in Ref. [8]. There are
two important issues to address for this and similar methods. One
issue is that the measurement of battery internal resistance is
difficult, and the other is that the relationship between the internal
resistance and the SOH is ambiguous. Many studies have been
performed relating to these two aspects, respectively. The most
common method to measure the internal resistance is the AC
impedance method. For example, the authors in Refs. [9] and [10]
presented a fast estimation algorithm that models the battery
and then estimates the internal resistance using the Extended
Kalman Filter (EKF). To address the relationship between resistance
and SOH, the authors in Ref. [11] redefined SOH as a function of
resistances. However, this new SOH prediction concept still needs
to gain widespread recognition. Another popular method of SOH
estimation is to combine the internal resistance with fuzzy logic
[12]. However, the battery internal resistance is not only related to
the SOH but also the SOC. In other words, the battery internal
resistance will rise with the reduction of SOC. Therefore, there is
still much left to be done before the internal resistance can be used
to estimate SOH precisely.

Efficient calculation and real-time computing are the develop-
ment trends for SOH estimation. Recently, researchers proposed
various data-driven methods for battery SOH estimation [13e16].
In Ref. [13], the authors utilized the famous machine learning al-
gorithm, support vectormachine, to estimate the SOH by using load
collectives as the training and test data. The authors in Ref. [14] first
developed an empirical model based on the physical degradation
behavior of lithium-ion batteries, with the model parameters
initialized by combining sets of training data based on Demp-
stereShafer theory. The Bayesian Monte Carlo is then used to pre-
dict the remaining useful life based on available data from battery
capacity monitoring. In Ref. [15], the authors utilized a probability
neural network to estimate the battery SOH, with three significant
characteristics as the inputs. The three used characteristics are the
length of the constant current charge time, the voltage drop during
the alternation of the constant voltage charge and the constant
current discharge, and the initial voltage at the constant current
charge. Similarly, the authors in Ref. [16] utilized four characteris-
tics, capacity, resistance, length of the constant current charge time
and length of the constant voltage charge time, to estimate the
SOH. The key to these data-driven methods is two-fold. The first is
what kind of characteristics are to be used for SOH estimation. The
second is how to combine these characteristics with a proper
inference algorithm. In this paper, we also propose a data-driven
method for estimating the SOH of Li-ion batteries. The proposed
novel method is based on Dynamic Bayesian Networks (DBNs). In
this method, consecutive terminal voltages of batteries during
constant charge processes are recorded as training data. The
training data are first categorized into K different classes according
to the SOH of batteries, and K corresponding DBNs are built. The
structure of each model is the same and is built according to the
experience of experts, while the parameters of the models are
different and are learned based on each category of training data. A
forward algorithm is then applied to real-time data of batteries for
the inference of the DBN models, to estimate the SOH in real-time.

The main contributions of the paper are as follows: Firstly, a
novel DBN-based method is proposed to estimate the SOH for Li-
ion batteries. Although DBN has been widely used in many appli-
cation fields, to our knowledge, it has never been used for SOH

estimation. Secondly, the proposed method is an online estimation
method, and only terminal voltages during the constant charge
process should be measured. Thirdly, the final estimated SOH can
be provided as either a fuzzy value or an exact value.

The rest of this paper is organized as follows: Section 2 de-
scribes, in detail, the battery aging procedures, which provide the
data acquired for training DBNs. Section 3 focuses on the proposed
DBN-based SOH estimation method. Section 4 shows a forward
algorithm that can be used to estimate the SOH in real time. To
validate the SOH prediction method presented, an experiment is
conducted and the results are presented in Section 5. Finally, Sec-
tion 6 states the main conclusion of this paper.

2. Life-cycle testing of batteries

In this research, LieMn batteries are used for the life-cycle test,
which is performed in a laboratory. Detailed electrical character-
istics of the batteries are shown in Table 1. Fig. 1 illustrates the
experimental equipment used for the life-cycle testing.

As shown in Fig. 1, batteries are discharged by the program-
mable electronic load IT8513B, manufactured by ITECH Electronics
Co. Ltd., and charged by the power supply JC6030A, manufactured
by Hangzhou Jingce Electronic Co. Ltd. A multi-meter UT804,
manufactured by Uni-Trend Group Limited, connected to a PC is
used to measure and store the voltages of the battery. In the
meantime, the internal resistance of the battery is measured by a
battery HiTester BT3562-01, manufactured by Hioki.

An initial capacity test was first conducted. The test was initi-
ated by discharging the battery to 0% SOC at a current rate of 1 C.
The capacity test then continued by charging the battery to 100%
SOC, letting it rest for two hours, discharging it back to 0% SOC, and
letting it again rest for two hours; this process constituted one
capacity measurement. This initial capacity measurement was
repeated several times until the two most recent values of capacity
converged to be within an acceptable percentage of one another.
This initial capacity test serves to recondition the battery [17].

A complete life cycle test is composed of a charge process and a
discharge process. First, the battery was fully charged. The charge
process usually consists of two parts: the constant current (CC)
subinterval and the constant voltage (CV) subinterval, as shown in
Fig. 2. A current of 2.4 A (0.4 C) was used to charge the battery
during the CC subinterval until the battery reached its cutoff
voltage (4.2 V). Then, the voltage was held constant at 4.2 V during
the CV subinterval until the current fell to 100 mA. In the process of
charging, the voltages of the battery were measured and stored
every 10 s. Secondly, the battery is rested to restore stability. Next, a
constant current of 6 A (1 C) was used to discharge the battery, and
the cutoff voltage was set to 2.75 V. During the discharge process,
the currents and time stamps were recorded to calculate the cur-
rent maximum capacity, Qcmax, of the battery. During the life-cycle
testing, the batteries are placed in a constant temperature chamber
at 25 �C.

Table 1
Electrical characteristics of the batteries.

Typ. voltage 3.7 V
Nominal capacity 6000 mAh, 1 C discharge
Maximum charge current 1 C
Maximum discharge current 1 C
Minimum discharge voltage 2.75 V
Maximum charge voltage 4.2 V
Discharge temperature �20 �C to 60 �C
Initial internal impedance �20 mU
Self-discharge current �200 mA
Cycle life (minimum) 800 cycles
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