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h i g h l i g h t s

� Robustness of the SoC estimator against varying health conditions is analyzed.
� Robustness of the SoP estimator against varying health conditions is analyzed.
� The need of parameter updates of battery model is analyzed and discussed.
� Accurate SoC and SoP joint estimator against varying health conditions is proposed.

a r t i c l e i n f o

Article history:
Received 13 July 2013
Received in revised form
24 December 2013
Accepted 7 February 2014
Available online 6 March 2014

Keywords:
Adaptive extended Kalman filter
State-of-charge
State-of-power
Parameter update
Lithium-ion battery
Electrified vehicles

a b s t r a c t

Battery state-of-charge (SoC) and state-of-power capability (SoP) are two of the most significant decision
factors for energy management system in electrified vehicles. This paper tries to make two contributions
to the existing literature. (1) Based on the adaptive extended Kalman filter algorithm, a data-driven joint
estimator for battery SoC and SoP against varying degradations has been developed. (2) To achieve ac-
curate estimations of SoC and SoP in the whole calendar-life of battery, the need for model parameter
updates with lowest computation burden has been discussed and studied. The robustness of the joint
estimator against dynamic loading profiles and varying health conditions is evaluated. We subsequently
used data from cells that have different aging levels to assess the robustness of the SoC and SoP esti-
mation algorithm. The results show that battery SoP has close relationship with its aging levels. And the
prediction precision would be significantly improved if recalibrating the parameter of battery capacity
and resistance timely. What’s more, the method reaches accuracies for new and aged battery cells in
electrified vehicle applications of better than 97.5%.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

To address the two urgent tasks nowadays of protecting the
environment and achieving energy sustainability, it is of strategic
significance on a global scale to replace oil-dependent vehicleswith
electric vehicles. Battery, as important on-board electric energy
storage, has been widely used in various electrified vehicles. The
most important factor determining their successful commerciali-
zation is technologies safeguarding the reliable and safe battery
operations. Battery management systems (BMS) have been
designed to provide monitoring, diagnosis, and control functions to
enhance the operations of battery. A critical function of BMS is to
accurately estimate battery state-of-charge (SoC) and state-of-po-
wer capability (SoP) in real-time [1e3].

On one hand, the accurate battery SoC estimate is a key decision
factor to manage batteries efficiently and to carry out the power
distribution strategy in various electrified vehicles [4,5]. On the
other hand, the accurate SoP estimate is critical in practical BMS
applications since it is necessary to determine the available power
in the moment to meet the acceleration, regenerative braking and
gradient climbing power requirements without fear of over-
charging or over-discharging. More importantly, accurate SoP es-
timates will be helpful to optimize the battery capacity and size and
benefit the vehicle’s general potency [6e8]. Therefore, to provide
an efficient guarantee for the optimization of energy management
system in electrified vehicles, a reliable SoC and SoP prediction
algorithm is particularly necessary.

In terms of SoC estimation, a wide variety of methods has pre-
viously been summarized for constructing the SoC estimator, each
one having its own advantage, as reviewed in Ref. [3]. Compared
with direct measurement method, Coulomb counting method,

* Corresponding author. Tel./fax: þ86 10 6891 4842.
E-mail addresses: rxiong6@gmail.com, rxiong@bit.edu.cn (R. Xiong).

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier .com/locate/ jpowsour

http://dx.doi.org/10.1016/j.jpowsour.2014.02.095
0378-7753/� 2014 Elsevier B.V. All rights reserved.

Journal of Power Sources 259 (2014) 166e176

mailto:rxiong6@gmail.com
mailto:rxiong@bit.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpowsour.2014.02.095&domain=pdf
www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
http://dx.doi.org/10.1016/j.jpowsour.2014.02.095
http://dx.doi.org/10.1016/j.jpowsour.2014.02.095
http://dx.doi.org/10.1016/j.jpowsour.2014.02.095


voltage and impedance measures based methods, filter algorithms
or integrated algorithmbased onmultiplefilters are attractingmore
attentions [9e18]. This is because that these kinds of approaches can
hardly applied to electric vehicles directly, but the filters based
approach can effectively avoid the problems from noise, inaccurate
current sensor, accumulated round off error and so on. Ref. [9] used
output injection-based PDE observer to predict the state of battery.
Ref. [10] presented a comparative study among the nonlinear state
observers and extended Kalman filters for predicting battery SoC.
Ref. [11] used extended Kalman filters to predict battery SoC.
Ref. [12] presented comprehensive unobservable model-based
battery SoC, unknown nonlinearities, and state-of-health (SoH)
estimation method. Refs. [13e18] presented several kinds of filters
for estimating battery SoC. The above methods have achieved
acceptable accuracy for battery SoC estimation. However, to achieve
an optimized performance and longer calendar-life of a battery, an
accurate battery SoP prediction method is necessary in addition to
the knowledge of its SoC [19e21]. It is noted that any power/energy
management system only focusing on the battery SoC is not reliable
enough for electric vehicles. It needs to be adjusted to meet the
requirements of battery SoP for long term objectives. Thus,
compared with the research experience in battery SoC, the battery
SoP estimation method is urgent needed.

In terms of SoP estimation, there are some methods have been
presented to guarantee safe, efficient, and durable operations of the
traction batteries under demanding driving conditions, which have
been reviewed by Xiong, in Ref. [19]. The most commonly used
approach is hybrid pulse power characterization (HPPC) method
proposed by the Idaho National Engineering & Environmental Lab-
oratory, which determines the static peak power in laboratory en-
vironments, but the estimates are over optimism. However, it is not
suitable to estimate the continuous peak currents that are available
for the next multi sampling intervals, additionally, the method ne-
glects design limits like cell current, cell power or SoC [6]. As an
improvement, the voltage-limited method was proposed by Plett
[8]. However, these two Rint model-based methods hardly could
simulate the relaxation effect performance and the estimateswould
diverge from the practical capability. To solve this problem, the
authors in Ref. [7] proposed a dynamic electrochemical polarization
battery model-based multi-parameter SoP estimation method.
Then, to efficiently estimate the battery SoP under multiple sam-
pling intervals, Ref. [21] has proposed a SoC and SoP joint estimator,
which has achieved a good accuracy in real-time.

However, most of the above estimation methods were verified
by the narrow set of scenarios of battery data, without exploring
varying battery aging levels. In other words, the reliability of these
estimation algorithms was not sufficiently assessed. For example,
many estimation approaches mentioned above were evaluated
under only one battery aging level. As a result, the performance of
these algorithms against different health conditions was not
adequately studied.

1.1. Contribution of the paper

In addition to the knowledge of SoC, the real-time SoP is also
important for reliable battery operation in energy storage system,
and these two states have close interactions in each other. Thus a
data-driven SoC and SoP joint/dual estimator is urgently needed.
However, battery performance is greatly restricted by its aging
levels. As a consequence, little literature explores prediction
methods for long term using. A key contribution of this study is to
develop an accurate estimation method for battery SoC and SoP
against varying health conditions. Thus the need of parameter
update in real-time has been discussed and analyzed. What’s more,
the relationship between the battery parameter and its state has

been evaluated by the data from cells that have different aging
levels. The result is helpful for improving the performance of SoC
and SoP joint estimator in its whole service period.

1.2. Organization of the paper

A description of the lumped parameter battery model, battery
experiments on several LiFePO4 lithium-ion battery (LiB) cells and
parameters identification method are given in Section 2. The data-
driven SoC and SoP joint estimator is depicted in Section 3. The
evaluation for the proposed battery parameters updating approach
is illustrated in Section 4. Finally, conclusions are drawn in Section 5.

2. Modeling for the lithium-ion battery

2.1. The dynamic lumped parameter battery model

To achieve a reliable battery state estimation, an accurate bat-
tery model needs to be built at first. The lumped parameter battery
model, which uses Nernst model to make the SoC as part of the
model, is developed. The schematic of the battery model is shown
in Fig. 1, it is very important to correctly identify the model
parameter, including the open circuit voltage (OCV) which is used
to describe the voltage source, series resistance (Ri) which is used to
describe the electrical resistance of various battery components or
with the accumulation and dissipation of charge in the electrical
double layer, diffusion resistance (RDiff) and diffusion capacitance
(CDiff) which consist of a RC network to describe the mass transport
effects and dynamic voltage performances. The electrical behavior
of the proposed model can be expressed by Eq. (1).

8<:
_UD ¼ � 1

CDiffRDiff
UD þ 1

CDiff
iL

Ut ¼ Uoc � UD � iLRi

(1)

where UD is the polarization voltage across CDiff, Ut is the terminal
voltage. Then the open circuit voltage Uoc can be described as
follows:

Uoc ¼ K0 þ K1SoCþ K2=SoCþ K3 lnSoCþ K4 lnð1� SoCÞ (2)

where Ki (i ¼ 0, 1, ., 4) are five polynomial involving different
capacities and temperatures chosen to make the model fitting the
test data accurately. However, the battery behavior of different
temperatures will be discussed in our future work.

Fig. 1. The schematic diagram of the lumped parameter battery model.

Table 1
Five aging levels of LiFePO4 lithium-ion battery cells.

Aging level SoH1 SoH2 SoH3 SoH4 SoH5

Capacity/Ah 12.5 11.76 11.4 10.7 9.6
SoH 1.04 0.98 0.95 0.89 0.80
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