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Abstract

This work is focused on the selection of operating conditions in polymer electrolyte membrane fuel cells. It analyses efficiency and con-
trollability aspects, which change from one operating point to another. Specifically, several operating points that deliver the same amount
of net power are compared, and the comparison is done at different net power levels. The study is based on a complex non-linear model,
which has been linearised at the selected operating points. Different linear analysis tools are applied to the linear models and results show
important controllability differences between operating points. The performance of diagonal control structures with PI controllers at different
operating points is also studied. A method for the tuning of the controllers is proposed and applied. The behaviour of the controlled sys-
tem is simulated with the non-linear model. Conclusions indicate a possible trade-off between controllability and optimisation of hydrogen
consumption.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Compared to other types of fuel cells, polymer electrolyte
membrane fuel cells (PEMFC) have many advantages that make
them suitable for a large number of applications. Some of these
advantages are high power density, compactness, lightweight,
low-operating temperature, solid electrolyte, long cell and
stack life, low corrosion and high efficiencies [1]. PEMFC are
regarded as ideally suited for transportation applications. How-
ever, important difficulties remain unsolved and a lot of research
is being done in order to make the technology ready to imple-
mentation and commercialisation [2].

Advantages of different operating conditions for PEMFC
have been described in the literature [3]. However, a comparison
of the system controllability at different operating points is not
found. A PEMFC can deliver the same amount of net power at
different operating conditions. In order to chose the appropriate
operating point, control aspects have to be taken into account,
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as well as efficiency aspects. Some works address the control
of PEMFC [4–6], but only the efficiency is considered to deter-
mine the operating conditions. The objective of this work is to
compare the controllability of a PEMFC operated at different
operating conditions. The performance of the control system is
evaluated implementing a diagonal structure with PI controllers
in the control loops.

2. The model

In their study of the PEMFC flow dynamics, Pukrushpan et al.
presented a control oriented model for an automotive application
which has been the base for the model used in this work [4,7].
The transient phenomena captured in the model include the flow
and inertia dynamics of the compressor, the manifold filling
dynamics (both anode and cathode), reactant partial pressures
and membrane humidity. On the other hand, the model neglects
the extremely fast electrochemical and electrical dynamics, and
temperature is treated as a constant parameter because its slow
behaviour (time constant of 102 s) allows it to be regulated by its
own controller. A constant cell temperature of 80 ◦C is assumed.
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Nomenclature

Ist stack current (A)
Kc proportional constant of the PI controller
pca cathode pressure (bar)
Pnet net power (W)
Ti time constant of the PI controller (s)
vst stack voltage (V)
vcm compressor voltage (V)
Wan,in anode inlet mass flow rate (kg s−1)

Greek letters
∆p anode–cathode pressure difference (bar)
λO2 oxygen stoichiometry

Mass and energy balance are the basic laws for the different
volumes being modelled. Constant properties are assumed in all
volumes. Flowrates from one volume to another are calculated
as a function of the upstream and downstream pressures. Ideal
gases are assumed.

Membrane hydration captures the effect of water transport
across the membrane. Water transport is modelled through drag
and diffusion effects. Both water content and mass flow are
assumed to be uniform over the surface area of the membrane.
This surface is of 280 cm2.

Stack voltage is calculated as a function of stack current,
cathode pressure, reactant partial pressures, fuel cell tempera-
ture, and membrane water content. Identical behaviour of each
cell is assumed and the stack voltage is calculated as the indi-
vidual cell voltage per the number of cells, in this case 381.

The air entering the cathode is impelled by a compressor
the model of which consists of a dynamic part and a static part
read from an experimental compressor map. The modelled com-
pressor has the angular velocity limited to 100 krpm, the exit
flow limited to 0.1 kg s−1, and the pressure ratio limited to 4.
The power consumed by the compressor is the only parasitic
power taken into account. The net power, Pnet, is therefore cal-
culated as the electric power given by the fuel cell minus the
power consumed by the compressor. Cooler and humidifier are
also included. It is assumed that a static humidifier supplies
the air with the desired relative humidity before entering the
stack.

At the anode side, entering hydrogen comes from a pres-
surised tank and the hydrogen flow is assumed to be a manipu-
lated input variable.

Only one modification is introduced, which is the existence
of an anode exit flow. This exit is necessary to control the hydro-
gen pressure along the flow channels and to improve the power
demand transient responses [2].

Some of the indexes used for the linear analysis depend on
the model scaling. One of the controlled outputs is the differ-
ence of pressure between anode and cathode, ∆p. It has been
scaled with a variation of 0.1 bar. To scale the rest of the input
and output variables, a maximum variation of 10% has been

assumed. Hence, the scaled variables are the non-scaled incre-
ments divided by the maximum increments.

SIMULINK linearisation tools have been used to obtain the
state space matrices of the system at the studied operating points.

3. Operating conditions

This work is based on the analysis of a set of selected operat-
ing points. Their operating conditions are summarised in Table 1.
In Fig. 1, the operating points are located on the curves of
net power versus stoichiometry at different current values. In
a fuel cell, a certain amount of net power can be obtained
at different currents. OP1 to OP5 deliver the same net power,
Pnet = 37,400 W, and the same happens with OP6 to OP8, with
Pnet = 30,000 W. OP1 and OP7 have the minimum amount of cur-
rent for which Pnet of 37,400 and 30,000 W can be, respectively,
obtained. For example, it is not possible to obtain 37,400 W of
net power with a current lower than 175 A, at any pressure or
stoichiometry. These operating points are specially interesting
because minimum current corresponds to the minimum hydro-
gen consumption if the hydrogen that does not react is recycled.
Looking at the different curves of Fig. 1, it can be seen that
for small λO2 Pnet increases when λO2 increases, but this trend
changes from a certain λO2 value. This is because when λO2

is high, to increase λO2 requires a compressor power increase
larger than the electric power increase obtained from the fuel

Table 1
Studied operating points

Pnet (W) Ist (A) λO2 vst (V) pca (bar) Efficiency
(%)

vcm (V)

OP1 37390 175 2.15 242.7 1.99 42.5 158
OP2 187 1.60 217.8 1.78 40.7 135
OP3 3.20 261.2 2.56 37.4 217
OP4 200 1.41 201.8 1.73 38.3 130
OP5 280 1.29 149.7 1.89 27.3 151

OP6 30000 134 2.37 254.2 1.86 44.9 142
OP7 150 1.25 209.5 1.49 41.4 100
OP8 3.89 273.94 2.55 36.6 214.0

Fig. 1. Different operating points.
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