FISEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Short communication

High temperature defect chemistry in layered lithium transition-metal oxides based on first-principles calculations

Yukinori Koyama ^{a,*}, Hajime Arai ^a, Isao Tanaka ^b, Yoshiharu Uchimoto ^c, Zempachi Ogumi ^a

- ^a Office of Society-Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- b Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan
- ^c Graduate School of Human and Environment Studies, Kyoto University, Yoshida Nihon-matsu, Sakyo, Kyoto 606-8501, Japan

HIGHLIGHTS

- ▶ Defect chemistry at high temperatures in layered LiMO₂ is revealed.
- ► Antisite transition-metal ions are major defects in LiCoO₂ and LiNiO₂.
- ► Oxygen vacancy is major defect in Li(Li_{1/3}Mn_{2/3})O₂.
- ▶ Defect concentration is sensitive to synthesis conditions for LiNiO₂.

ARTICLE INFO

Article history: Received 17 October 2012 Received in revised form 10 December 2012 Accepted 15 December 2012 Available online 21 January 2013

Keywords:
Defect chemistry
First-principles calculation
Lithium-ion battery
Electrode active material

ABSTRACT

Defect chemistry at high temperatures in layered lithium transition-metal oxides of LiCoO₂, LiNiO₂, and Li(Li_{1/3}Mn_{2/3})O₂ is investigated on the basis of first-principles calculations. The antisite transition-metal ions are the major defects in LiCoO₂ and LiNiO₂. However, the easy formation of the electron defect in LiNiO₂ leads to the preferential valence state of Ni⁰_{Li} and thus to the $P_{\rm O_2}^{-1/2}$ dependence of the defect concentration on the oxygen partial pressure. On the other hand, the formation of the electron defect as the accompaniment of the antisite cobalt ion in LiCoO₂ leads to the preferential valence state of Co⁺_{Li} and the $P_{\rm O_2}^{-1/4}$ dependence. The defect concentration is, therefore, more sensitive to the synthesis conditions for LiNiO₂ than that for LiCoO₂. Li(Li_{1/3}Mn_{2/3})O₂ with low defect concentrations can be easily synthesized at ambient oxygen partial pressures, although the concentration of the oxygen vacancy increases as oxygen partial pressure decreases. The defect chemistry based on the first-principles calculations can provide quantitative information on the characteristics of electrode active materials as well as guides to their optimum synthesis conditions.

 $\ensuremath{\text{@}}$ 2013 Elsevier B.V. All rights reserved.

1. Introduction

Various lithium transition-metal oxides are examined as active materials of positive electrodes for lithium-ion batteries. Most of them are synthesized by solid-state reaction processes [1]. Point defects are formed at high temperatures in such synthesis processes, and some of them may remain in the samples owing to their slow diffusion at low temperatures. The residual defects are the cause of many properties of actual electrode active materials. For instance, LiNiO₂ always has excess nickel, and the excess nickel ion exists as an antisite defect at the lithium site. Although the amount

of excess nickel should be small to obtain a large rechargeable capacity, which is an advantage of LiNiO_2 over LiCoO_2 , the amount of the excess nickel is dependent on the synthesis conditions [2–4]. Therefore, knowledge of defect chemistry in electrode active materials at high temperatures is essential to optimize their synthesis conditions, and thus to improve performance of lithium-ion batteries.

Despite the importance of inquiry into defect chemistry in electrode active materials, it is difficult to accurately determine defect concentrations in lithium transition-metal oxides. Therefore, investigation on the defect chemistry based on theoretical calculations is expected. For this purpose, first-principles calculations based on density functional theory (DFT) is promising with consideration of chemical conditions and variety of valences of point defects [5]. The formation energies of the point defects that lead to nonstoichiometry are dependent on chemical conditions such as

^{*} Corresponding author. Tel.: +81 774 38 4966.

E-mail addresses: koyama@saci.kyoto-u.ac.jp, y.koyama@at7.ecs.kyoto-u.ac.jp
(Y. Koyama).

oxygen partial pressure. Thus, the consideration of the chemical conditions is required for the evaluation of the defect concentrations. As transition-metal species can have variety of valences, point defects in transition-metal oxides may also have various valences. Hence, an electron defect, a hole defect, and point defects with different valences should be taken into account for evaluation of the defect concentrations.

We herein report an investigation of the defect chemistry at high temperatures in lithium transition-metal oxides of LiMO₂ (M = Co, Ni, and Li_{1/3}Mn_{2/3}) with an $\alpha\textsc{-NaFeO}_2\textsc{-type}$ layered structure based on systematic first-principles calculations. LiCoO₂ has the regular $\alpha\textsc{-NaFeO}_2\textsc{-type}$ structure. LiNiO₂ exhibits Jahn-Teller distortion, which causes a distortion from a rhombohedral lattice of the regular $\alpha\textsc{-NaFeO}_2\textsc{-type}$ to a monoclinic lattice [6]. Li(Li_{1/3}Mn_{2/3}) O₂ exhibit a [$\sqrt{3} \times \sqrt{3}$]R30° superlattice in the (Li_{1/3}Mn_{2/3}) layers. We give and discuss the equilibrium concentrations of the point defects in these oxides at high temperatures and various oxygen partial pressures.

2. Calculation method

The formation energy of defect X at site A in valence state q is defined as

$$\Delta_f E(X_A^q) = E^{\text{DFT}}(X_A^q) - E^{\text{DFT}}(\text{bulk}) - \sum_i \Delta n_i \mu_i + q \varepsilon_F , \qquad (1)$$

where $E^{\mathrm{DFT}}(X_A^q)$ and $E^{\mathrm{DFT}}(\mathrm{bulk})$ are the energies of supercells obtained by DFT calculations with and without the defect X_A^q , respectively. Δn_i is the change in the number of atoms of species i, which has been added ($\Delta n_i > 0$) or removed ($\Delta n_i < 0$). μ_i is the atomic chemical potential of species i. ε_F is the Fermi energy. Note that $E^{\mathrm{DFT}}(X_A^q)$ and $E^{\mathrm{DFT}}(\mathrm{bulk})$ are, in principle, Gibbs free energies. However, the entropy and volume terms can be disregarded for solid phases. Under thermal equilibrium, the concentration of the defect X_A^q at temperature T can be obtained as

$$C(X_A^q) = C(A_A) \exp\left(-\frac{\Delta_f E(X_A^q)}{k_B T}\right),$$
 (2)

where $C(A_A)$ and k_B are the concentration of site A without any defect and the Boltzmann constant, respectively. This estimation scheme assumes no interaction between defects and homogeneous distribution of the defects. The concentration is given per formula unit, in units of 1/f.u., in this paper. In the present work, point defects of vacancies ($V_{\rm Li}$, V_M , and V_O), interstitial cations (Li_i and M_i) at the tetrahedral sites in the lithium layers, antisite cations ($M_{\rm Li}$ and Li_M), an electron defect (e⁻), and a hole defect (h⁺) were examined.

To represent a chemical condition of the LiMO $_2$ system under thermal equilibrium, one internal parameter (ε_F) and four external parameters (T, $\mu_{\rm Li}$, $\mu_{\rm M}$, and $\mu_{\rm O}$) exist. The Fermi energy was determined so that the system satisfied charge neutrality. Temperature and oxygen partial pressure were used as variables in this investigation. The atomic chemical potential of oxygen at temperature T and partial pressure $P_{\rm O}$, is given as

$$\mu_{\rm O} = \frac{1}{2}G_{\rm O_2} = \frac{1}{2} \left(E_{\rm O_2}^{\rm DFT} + \left(G_{\rm O_2}^{\rm 0}(T) - G_{\rm O_2}^{\rm 0}({\rm 0K}) \right) + k_B T \ln \left(\frac{P_{\rm O_2}}{P^{\rm 0}} \right) \right), \quad (3)$$

where $E_{\mathrm{O}_{2}}^{\mathrm{DFT}}$ is the energy of an O_{2} molecule obtained by DFT calculation, corresponding to the Gibbs free energy at 0 K without the zero-point energy. $G_{\mathrm{O}_{2}}^{0}$ is the Gibbs free energy of the gaseous O_{2} phase under the standard pressure P^{0} as a function of temperature, which is estimated by assuming the oxygen to be an ideal gas on the

basis of experimental results [7]. The existence of the LiMO₂ phase requires a constraint on the chemical condition as

$$\mu_{Li} + \mu_{M} + 2\mu_{O} = E_{LiMO_2}^{DFT}, \tag{4}$$

where $E_{\rm LiMO_2}^{\rm DFT}$ is the energy of LiMO₂ obtained by DFT calculation. With these conditions, a single variable remains. In this investigation, the atomic chemical potential of lithium was set to be under equilibrium with Li₂O as

$$2\mu_{\rm Li} + \mu_{\rm O} = E_{\rm Li2O}^{\rm DFT}, \tag{5}$$

where $E_{\mathrm{Li_2O}}^{\mathrm{DFT}}$ is the energy of $\mathrm{Li_2O}$ obtained by DFT calculation. This corresponds to setting the most lithium-rich condition during the synthesis to minimize lithium deficiency in the samples.

The defect energies were calculated using 144-atom (Li₃₆M₃₆ O_{72}) supercells constructed by the expansion of the α -NaFeO₂-type unit cell by $2\sqrt{3} \times 2\sqrt{3}$ in the ab plane. Single defects were individually introduced into the supercells. Lattice constants were fixed at those of the pristine oxides. Atomic positions were optimized until the residual forces became less than 0.02 eV Å⁻¹. The electrostatic potentials of the charged supercells were corrected so that the electrostatic potentials at the farthest ions from the defects were the same as those in the pristine crystals [5,8,9]. The DFT calculations were performed using the plane-wave basis projectedaugmented-wave (PAW) method implemented in the VASP code [10-12]. The plane-wave basis set was determined with a cutoff energy of 500 eV. The integral in the reciprocal space was evaluated by the Gaussian smearing technique with a smearing parameter of 0.1 eV and a $2 \times 2 \times 1$ mesh. The exchange-correlation interaction was treated by the generalized gradient approximation with the Hubbard model correction (GGA + U) [13,14]. A U parameter of 5 eV was commonly used for all the transition-metal species and valences in the present work.

3. Results and discussion

Fig. 1(a) illustrates the equilibrium concentrations of the point defects in LiCoO₂ as a function of temperature and oxygen partial pressure. Fig. 1(b)–(d) illustrate cross sections of Fig. 1(a) at T=1100 K, $P_{\rm O_2}=0.2$ atm, and $P_{\rm O_2}=10^{-6}$ atm, respectively. The defect concentrations in the figures are the totals for each type of defects summed over all possible valences. The dominant defect in LiCoO₂ is the antisite cobalt ion at the lithium site (Co_{Li}). The oxygen vacancy ($V_{\rm O}$) and the interstitial lithium ion (Li_i) are the minor defects at very high temperatures and low oxygen partial pressures. The calculated electronic states indicate that the antisite cobalt ion is in the divalent state with the high-spin configuration, whereas the regular cobalt ion is in the trivalent state with the low-spin configuration. The excess charge of the antisite cobalt ion is compensated by an electron defect as a small polaron (another divalent cobalt ion at the regular cobalt site).

Above 1000 K at 0.2 atm oxygen partial pressure, the electron defect is formed as an accompaniment of the defect formation reaction of the antisite cobalt ion as

$$LiCoO_2 \rightarrow Co_{Li}^+ + e^- + Li_2O + 1/2O_2.$$
 (6)

Thus, the equilibrium concentrations of the antisite cobalt ion and the electron defect have $P_{0}^{-1/4}$ dependences, as shown in Fig. 1(b) at high oxygen partial pressures. At lower oxygen partial pressures, the antisite cobalt ion tends to be associated with an electron defect as the Co_{Li}^0 defect. Therefore, the total concentration of the antisite cobalt ion $(Co_{Li}^+$ and Co_{Li}^0) becomes more than the concentration of the electron defect as shown in Fig. 1(b) and (d).

Download English Version:

https://daneshyari.com/en/article/1287523

Download Persian Version:

https://daneshyari.com/article/1287523

<u>Daneshyari.com</u>