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a b s t r a c t

In this paper, the modelling of an energy generation system based on polymer electrolyte membrane fuel
cell (PEMFC) system through a parameter varying approach (LPV model), that takes in to account model
parameter variation with the operating point, is presented. This model has been obtained through a
Jacobian linearization of the PEMFC non-linear dynamic model that was previously calibrated using real
data from lab. In order to illustrate the use of the LPV model obtained its application to model-based fault
detection is used. For this purposes a set of common fault scenarios, which could appear during a normal
PEMFC operation, is used as case study.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Low-temperature PEM fuel cells are considered as sources for
rapid medium of energy generation, making these equipment suit-
able for automobile applications. The supply of raw materials
(usually air or pure oxygen) is normally performed using an air
compressor or blower and hydrogen stored in tanks. The system
uses additional equipment to carry materials reaction to the opti-
mum operating conditions, such as cooling systemsand humidifier.
During the chemical reaction that is taking place into the stack,
where the energy is generated, different phenomena occur, such as
thermal, fluid-mechanical and electrolytic.

The complex and non linear dynamics of the power generation
systems based on fuel cell technology lead to the use of linear mod-
els that includes parameter varying with operating point not only
for advanced control techniques but also for fault diagnosis algo-
rithms based on models. The use of LPV models is an alternative
to the approaches presented in previous works [1,2] addressing
methodologies for monitoring and fault diagnosis based on a the-
oretical non-linear dynamic model proposed by Pukrushpan [3,4].
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Within the recent decade, state of art and background about
control of LPV systems has been developed [5–10]. Because of a
LPV system can be considered as a parametrized family of linear
systems that change with the operating point conditions, then LPV
technique allows a systematic approach for control and fault diag-
nosis system design. At the cost of conservatism the approach can
be applied to an even wider range of systems known as quasi-
LPV systems, where varying parameters are scheduled with state
variables.

Since LPV models are structured as similar as a linear time-
invariant (LTI) state space system, the control and fault diagnosis
design methods can easily be extended. The main contribution of
this paper is to obtain a linear parameter varying model for a typical
PEMFC and illustrate its use for robust fault detection using interval
observers.

2. Fuel cell modelling

The model proposed in [11], is a non-linear dynamic model cali-
brated using real data from laboratory using a lsq-non linear fitting
approach [12,13]. This model is able to reproduce the behaviour
of a commercial PEMFC (Ballard 1.2 kW, Nexa©) prototype, which
has been identified in a wide range of operating conditions. Fig. 1
shows the dynamic model layout.

2.1. Dynamic non-linear model

The model is considered as SIMO system, where the input (u)
is the stack current (Ist) and the outputs (y) are battery tempera-
ture (Tst), stack voltage (vst), oxygen consumption ratio (�O2 ), speed
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Fig. 1. Nexa© PEMFC simulator schematic.

engine (ωcp) and inlet pressure to the cathode (Psm). The voltage
from the compressor (vcm) is controlled using a static feed-forward
controller. Fig. 2 shows the layout of each subsystem embedded
into the PEMFC dynamic model.

The proposed model consists often state, and the state equations
are listed in the following

ω̇cp = 1
Jcpωcp

(�cm − �cp),

Ṗrm = RairTrm

Vrm
(Wca,o − Wrm,o),

ṁrm = Wca − Wrm,o,

Ṗsm = �Ra

Vsm
(WcpTcp − Wsm,oTsm),

ṁsm = Wcp − Wsm,o,
ṁH2 = WH2,i − WH2,o − WH2,r−WH2,nl

,

ṁw,an = Wvan,i − Wvan,o − Wvmbr
,

ṁN2 = WN2,i − WN2,o,
ṁO2 = WO2,i − WO2,o − WO2,r ,

mstCst Ṫst = Hreac − Pelec − Qrad − Q̇conv.

(1)

The state variables (x) of this dynamic model are the following:
mass of oxygen (mO2 ), nitrogen (mN2 ), hydrogen (mH2 ), cathode
water flow (mw,ca), stack temperature (Tst), angular velocity of the
compressor (ωcp), supply pressure (Psm) and return pressure (Prm)
of the humidifier, inlet flow (msm) and outlet flow (mrm) of humid-
ifier. The subindex in the variables i, o, r, nl means, input, output,
reaction and natural, respectively. In the heat balance the subindex
reac, elec, rad and conv are related respectively to reaction, electric,
radiation and convection.

The system perturbation (z) that have been considered are
related to the weather conditions (Tamb, Patm).

The model output equations are:

• Stack voltage:

vst = nfc · (E − vact − voh − vcon). (2)

• Oxygen excess ratio:

�O2 = WO2,i

WO2,r
= xO2 · Wcp

(MO2 · nfc · Ist)/4 · F
. (3)

• Compressor speed motor:

ωcp = Ucp · 60
dc · �

, (4)

where vst , total stack voltage (V); E, open circuit voltage (V);
vact , activation voltage loss (V); voh, ohmic voltage lose (V); vcon,
concentration voltage loss (V); nfc, amount of cells; �O2 , oxygen
excess ratio; Ist, stack current (A); F, Faraday constant (col/mol);
W, mass flow (g/s); Ucp, compressor blade (KRPM); dc, compres-
sor diameter blade (%); �, compressor efficiency (%); MO2 , oxygen
molar weight (g/mol); MH2 , hydrogen molar weight (g/mol); xO2 ,
oxygen fraction (%); ϕi, humidity (i = ca, an) (%).

3. Linear parameter varying model

Exist different ways to obtain LPV models. Some methods use
non-linear equations of the system to derive a LPV model such as
state transformation, substitution of functions and methods using
the well known Jacobian linearization [14–16]. Another kind of
method uses multi-model identification that consists basically in
two different steps: (1) a set of LTI model is identified at differ-
ent equilibrium points by classical methods (on-line or off-line), (2)
then, the following step is to get a multi-model by an interpola-
tion law that allows to commute among local LTI model at each
operating point [17,18].

3.1. Problem formulation

The type of LPV system, which is considered in this
paper, assumes an affine dependence with a parame-
ter vector ϑ̃k and can be described in discrete time state
space as:

xk+1 = A(ϑ̃k)xk + B(ϑ̃k)uk + wk,

yk = C(ϑ̃k)xk + D(ϑ̃k)uk + vk,
(5)

where xk ∈Rnx , uk ∈Rnu and yk ∈Rny are, respectively, the state,
input, and output vectors. The process and measurement noises are
wk ∈Rnx and vk ∈Rny respectively. Both are considered unknown
but bounded as vk ∈Vnx and wk ∈W which are interval boxes.
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